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Introduction

This chapter presents the theme of this book as well as the motivation of addressing the se-
lected aspects.

Motivation

The main objective of this work is focused on processing the text and on synthesising
the speech. Going deeper, we enriched the text processing tools which automatically
solves tasks for texts written in the Romanian language, such as diacritics restora-
tion, lemmatization and part-of-speech tagging. To gain more experience we went
beyond the linguistic field in an attempt to cover certain gaps within the medical
field that could be automated. For the speech synthesis part we worked on meth-
ods to enrich the expressivity of the artificially created voice together with ways of
improving its quality.

These two direction (text processing and speech synthesis) would eventually
sum up in the near future, in order to obtain a solid tool that is able to produce a
high quality expressive synthetic voice from the Romanian texts.

Medical text data processing

In the era of Big Data, more and more information is available almost everywhere
in any form (written, drawn, audio, video, etc.) and in a variety of communication
styles: from formal (technical online courses, job descriptions, invitation to business
or professional events, etc.) to informal (social networks, written blogs, etc.). Pro-
cessing such large amounts of data can slow the daily activities, leading to fatigue
or to exceed the deadline of daily tasks.

One of the domains which operates with the above mentioned large datasets is
the medical domain. Medical physicians must not only make the right decisions
based on the patient’s history, but also fit in the time allocated to a person’s consul-
tation. Beyond analysing and correlating different aspects from the patient’s life, the
medical doctor should think on the spot a treatment scheme compatible with all the
pre-existing ailments or diseases of the consulted patient. Having all these aspects
in mind, the researchers investigated the impact of machine learning algorithms on
developing better tools to analyze medical data. For example, machine learning al-
gorithms can be used in medical imaging (namely X-rays or Magnetic resonance
imaging -MRI- scans) using pattern recognition to search the patterns that indicate
a particular disease [1]. Another application of machine learning in the medical do-
main is to gain insight in the written information of every patient. More precisely,
using the topic modelling techniques, we can automatically find one person’s diag-
nostic by analysing the personal medical records. Thus, we not only ease the medical
doctor’s routine work, but we also avoid the effects of fatigue in making erroneous
decisions. These automations do not suppress the human role, in the sense that there
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will always be the need of specialised human intervention, in order to offer a cus-
tomised and contextualised interpretation, but at the same time, avoiding doing the
repetitive and monotone work is priceless.

Starting from all the above mentioned aspects, we analysed medical records from
a medical physician in order to find a topic modelling machine learning tool to au-
tomatically find one person’s diagnostic. We processed an English written dataset,
containing notes on patients’ health conditions, manually gathered by a medical
family doctor. Based on the state-of-the-art analysed in Section 3.1.2 from Chapter
3, we applied topic modelling techniques, namely the Latent Dirichlet Allocation
(LDA) and the Latent Semantic Indexing, to cluster the medical documents based
on the diagnostics described through similar symptoms. Our original results are de-
scribed and discussed in Section 3.1.3 from the same Chapter and published in the
research paper [2].

When it comes to medical data, an important role is played by the written con-
tent obtained from questionnaires’ responses (to determine different traits, commu-
nication styles, psychological personality, future trends in shopping or marketing,
etc.). Therefore, it becomes imperative necessarily to discover a methodology of au-
tomatically gaining insight from the collected data. Recent studies widely addressed
this aspect obtaining worth mentioning results, which we have described in Section
3.2.1.

Enhancing the Romanian Text-to-Speech systems

Starting with the first years of life, the human specie learns how to communicate
using words. Through speech, we express our needs, ideas, emotions or feelings.
Thus, the speech synthesis, or the process of generating spoken language from a
written given text, earned its place on the top of artificial intelligence’s researchers’
interest. Nowadays, with the help of modern technologies and deep learning [3], [4],
[5], we can obtain high quality artificial speech, close to the natural human speech.
However, in most of the cases, the text-to-speech systems manage to transmit only
the information comprised by the text, with no content about the speaker’s emo-
tions, characteristics or tones (sarcasm, irony, etc). This lead to a linear message,
sometimes different in meaning from the original intended idea.

Maybe one of the most useful applications of speech synthesis is helping people
diagnosed with severe illnesses that lead to voice loss (among which throat cancer
and motor neuron disease), either by recreating their original voice using their older
audio recordings, whenever is possible, or by using an artificial voice output by a
Text-to-Speech (TTS) system. A current and mundane example is the case of the
American movie actor Val Kilmer who lost his voice after being diagnosed with
throat cancer. When it comes to movies, the verbal communication is crucial, as
acting involves transmitting a message both verbally and especially artistically, with
different tones, intonations and emotions, leading to hidden meanings. Today Val
Kilmer continues to play in movies by using an artificially produced voice2.

Another famous example is that of the scientist Stephen Hawking3 who lost his
voice after falling ill with an early-onset slow-progressing form of motor neuron
disease, which slowly paralysed him, leading to the incapacity to speak. In this

2Videos and samples of his reconstructed voice are available online:
https://www.youtube.com/watch?v=OSMue60Gg6s

3More information is available here: https://www.hawking.org.uk



3

case too, the original scientist’s voice could be recreated, as there are available many
audio recordings with his voice, describing his scientific findings and research.

However, despite these two examples presented above, for the majority of pa-
tients, audio samples or recordings with their original voices are not always avail-
able. This implies creating an artificial voice only with the existing datasets tailored
especially for this purposes [6], [7]. From this point, two questions arise:

1. How can we create voices that convey the speaker’s emotions?

2. How can we create quality voices based on small data sets (for low-resourced
languages), being known that current deep learning technologies require large
input datasets for training?

Having those ideas in mind, many researchers focused their work on overcoming
these aspects. We address these issues in the second part of this book. Chapter 4,
in Sections 4.3 and 4.4, presents the main ideas as well as a brief state of the art for
both emotional TTS (Figure 4.4) and speech synthesis for low-resourced languages
(Figure 4.3). Our original contributions are described in Chapter 5.

As a first step, we focused on ways to improve the quality of the obtained synthe-
sized voice, since there are few large datasets available for the Romanian language
[8], so necessary for synthesis processes. Therefore, we investigated different tech-
niques of post-filtering the obtained synthesized voice in order to correct the artifacts
that can appear after training the text-to-speech system with a limited set of input
data. The results are presented in our original research paper [9].

Another step was to create MARA4 [10], a dataset with expressive data to be used
in future research. Based on the newly created dataset, we then analyzed different
ways of artificially increasing the volume of expressive data, as well as the impact
of this new data on subsequent syntheses. The results are presented in our original
research [10].

Research work as a whole

In order to obtain a more expressive voice within the text-to-speech synthesis pro-
cess, we should model and control the prosody (intonation in speech) in a way close
to natural speech. Prosody can be shaped both by the characteristics of the voice (in-
tonation, stress, tonality, etc.) and by various annotations of the written text (accent,
parts of speech, etc.). Therefore, as future work, we intend to create a software prod-
uct which will integrate both parts of the current book: Romanian Natural Language
Processing (NLP) and Expressive TTS. More precisely, the input text, processed and
annotated using the systems developed in [11], [12], [13] will be passed through a
deep TTS system leading to a more expressive synthesised output.

On the other hand, when we applied the NLP mechanisms for data from the
medical domain, we took into consideration only the texts written in English. When
it comes to the Romanian language, written text should obey certain rules. Diacritics
play an important role in understanding the meaning of a given text. For instance,
the written form „peste" without diacritics and no other contextual information, can
mean both pes, te (En. fish) or peste (En. over).The systems developed within our re-
search [11], [12], [13] offer us the possibility to preprocess text written in Romanian,

4The dataset is available online: https://speech.utcluj.ro/sped2021_mara/

https://speech.utcluj.ro/sped2021_mara/
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making it appropriate to be given as input to different machine learning classifica-
tion learners. As future work, we intend to use the systems [11], [12], [13] to gain
more insight from these medical Romanian texts.

Book structure

The present book is structured in two parts, as we addressed two correlated do-
mains, namely Text Processing and Speech Synthesis.

I The first part of the volume comes to offer a solution to automatize the text
processing tasks, as follows:

• Chapter 1 describes the theoretical background for the Natural Language
Processing field. We presented the core areas with their main applica-
tions, together with correlated research papers, as synthesised in Figure
1.3.

• Chapter 2 introduces our original contributions in solving linguistic prob-
lems using deep learning algorithms, such as restoring the diacritics for
a written text [12] and finding the lemma [11] or the part of speech of
certain given words [13]. All the experiments were conducted on texts
written in the Romanian Language. The results are intended to be used
in correlation with the findings from Chapter 5.

• Chapter 3 presents our personal contributions in processing the written
text from the medical domain by applying the machine learning (ML) al-
gorithms for two main tasks: identifying the medical diagnostic through
the topic modelling techniques [2] and interpreting the psychological ques-
tionnaires results with the aid of the classification learners [14]. All the
experiments are based on the texts written in English Language.

II The second part of the volume focuses on improving the Romanian Text-to-
Speech systems in terms of expressivity and speech quality.

• Chapter 4 offers a brief theoretical background of the main speech pro-
cessing aspects addressed within the current research and the state-of-
the-art in the field of Text-to-Speech systems, using the Machine Learning
methods. We focus on Expressive TTS and on Speech Synthesis for low
resourced languages. The information collected in this chapter facilitates
understanding the research published in [9] and [10].

• Chapter 5 presents our personal contributions in improving the Roma-
nian TTS systems by addressing two main aspects: improving the quality
of the synthesised voice [9] and enhancing the expressivity of the TTS
system’s results [10]. The experiments were developed within a research
project, supported by a grant of the Romanian Ministry of Research and
Innovation, PCCDI – UEFISCDI, project number PN-III-P1-1.2-PCCDI-
2017-0818/73, within PNCDI III. Our project is described in detail online
at Sintero Project.

Original Contributions

The current book derives from the theoretical and experimental research done in two
main domains: Text Processing and Speech Synthesis.

https://speech.utcluj.ro/sintero/
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I For the Natural Language Processing field, we have offered solutions to:

• automatically restore the diacritics for a text written in Romanian. We
have compared 6 deep learning architectures trained using only parallel
input-output pairs of texts, with and without diacritics. [12]

• automatically determine the lemma for the Romanian words. We have
analysed 24 systems based on Deep Neural Networks, trained on labelled
pairs of words and the corresponding lemmas, using at most the part-of-
speech tag as morphological information.[11]

• automatic Romanian Part of Speech tagging. We have analysed two types
of architectures:

(a) simple long short-term memory networks (LSTM) - based networks
(b) sequence-to-sequence architecture (seq2seq) based on LSTM layers -

with different types of encodings for the input data (one hot encoding
or letter encoding)

resulting in 10 systems to be compared.[13]

II From the perspective of Speech Synthesis, myself along with the Sintero5 col-
leagues have:

• created a large speech dataset containing more dynamic intonation pat-
terns, the MARA Dataset6 [10]

• trained and tested 6 deep learning TTS systems to improve the expressiv-
ity of the synthesised voice, in the context of lacking expressive datasets.
The results are discussed in the original research paper [10].

• trained and tested 20 deep learning TTS systems in 3 postfiltering scenar-
ios in order to evaluate the impact of each approach on the quality of the
synthesised voice [9].

5https://speech.utcluj.ro/sintero/
6https://speech.utcluj.ro/corpora/mara.html



6

Part I

Solutions for Natural Language
Processing (NLP) problems
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Chapter 1

Theoretical insights into NLP

In this chapter we present the background knowledge and the state-of-the-art in the field of
Natural Language Processing problems, using Machine Learning methods. The information
collected in this chapter facilitates the research published in [2], [11], [12], [13], [14].

1.1 The beginnings of NLP

Natural Language Processing (NLP) means empower the computers to interpret
and/or to understand a message expressed in a natural language (either written
or spoken) in a similar manner the human brain does. The first notable attempts
in NLP research were done during the World War II when people become aware of
the importance of translating and transmitting the messages across the battlefield
in an encrypted and, ideally, an automated manner. We mention here the Enigma
machine [15], the Colossus Computer [16] and the electromechanical Bombe[17].

In [18], Alan Turing proposed the Imitation game (known nowadays as the Tur-
ing test) with the purpose of determining if the computers can think. The setup
is the following: a human interrogator should discriminate between a human and
a machine/computer based on the responses given to a set of questions, posed in
a written form. If the evaluator cannot correctly distinguish between human and
machine, the computer has passed the test. The answers are evaluated in terms of
human-predictability rather than the content’s correctness. As the communication
is restricted to written channels, the machine speech ability is not interfering.

Years before Turing, René Descartes prefigures aspects of the Turing test in his
1637 "Discourse on the Method"[19] when he writes:

" [H]ow many different automata or moving machines can be made by the indus-
try of man . . . For we can easily understand a machine’s being constituted so that it
can utter words, and even emit some responses to action on it of a corporeal kind,
which brings about a change in its organs; for instance, if touched in a particular
part it may ask what we wish to say to it; if in another part it may exclaim that it
is being hurt, and so on. But it never happens that it arranges its speech in various
ways, in order to reply appropriately to everything that may be said in its presence,
as even the lowest type of man can do. [19] "

Although Descartes predicts to some extend the Turing test’s concept being aware
of the automata linguistic limits within a conversation, he fails to consider that these
limits might be overcome over time due to the scientific research and discoveries.

Denis Diderot formulates in his 1746 book "Pensées philosophiques" [20] a Turing-
test criterion, but he restricts the participants to natural living beings, rather than
considering the created machines:

"If they find a parrot who could answer to everything, I would claim it to be an
intelligent being without hesitation." [20]
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This statement expresses the general way of thinking during that period, known
as materialism.

Since Turing introduced his test, it has been both highly influential (with appli-
cations from medicine [21], [22], text processing [23], image processing - face recog-
nition [24] to speech synthesis [25] and industry [26]) and widely criticised [27], and
has become an important concept in the philosophy of Artificial Intelligence.

Around 1958, one researcher with important contribution in NLP development
was Noam Chomsky [28]. He started from the idea that models of language rec-
ognized sentences that were nonsense but grammatically correct as equally irrele-
vant as sentences that were nonsense and not grammatically correct. For instance,
the sentence “Colorless green ideas sleep furiously” was classified as improbable
to the same extent that “Furiously sleep ideas green colorless”. A native English
speaker can discriminate the former as grammatically correct and the latter as incor-
rect. Chomsky opinionated this should be expected of machine models too [28].

Before 1970s researchers were split into two groups. The firsts developed sym-
bolic NLP [29], based on formal languages and syntax generation, while the others
developed stochastic NLP [30], based on statistics and probabilistic models, with ap-
plications in pattern matching between texts or optical character recognition (OCR).

After 1970’s, with the development of the NLP techniques, the researchers split
more specifically. One group focused on the logic-based paradigms, interested in
the applications of encoding rules into mathematical logic, later creating the Prolog
programming language [31]. Another group remained focus on the natural language
understanding tasks, starting form Terry Winograd’s SHRDLU program [32].

In the following section we will focus on more recent approaches for the NLP
tasks, exclusively based on machine learning in general and deep learning in partic-
ular.

1.2 Processing the NLP tasks before Deep Learning (DL)

With a large amount of unlabelled data, one of the main challenges in solving NLP
tasks is to learn a data representation from the inner data structure itself. This leads
to Unsupervised Feature Learning, an approach to obtain a lower dimensional rep-
resentation of the data from the higher-dimensional initial space. Techniques as De-
cision Tree Based Model, Support Vector Machine, Random Forest, Classification
based on instances (k-NN), Logistic Regression or Principal Components Analysis
have been successfully applied to solve NLP tasks as Topic Modelling [33], [34], Sen-
timent Analysis [35], [36], Text Classification [37], [38], [39].

In our research, we also evaluated the above mentioned algorithms. The exper-
iments were introduced in our research papers [14] and [2], described in Chapter
3.

However, during the last years, once with the revival of the neural networks, the
traditional approaches have been almost totally replaced.

1.3 DL for NLP

An artificial intelligence (AI) goal might be to upgrade from generating, communi-
cating and storing the data to processing the available data. With a daily increas-
ing of the data volume, deep learning seems to be the solution of AI for analysing
these large amounts of data. Deep learning (DL) consists in a set of mechanism -
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which we will briefly describe below - which can generate optimal solutions given
an appropriate input dataset. In most of the cases, these algorithms equal or even
outperform the human capabilities. Although there is not a standardized definition
accepted by all the researchers, a neural network with two or more hidden layers
is called deep neural network. The main differences between the different types of
neural networks consists in:

• the number of layers

– sequential neural networks - each node links the earlier layer with the
next one (Feed Forward Neural Network - FFNN)

– deep neural networks

• the way the nodes communicate between layers:

– horizontally sharing the weights - Convolutional Neural Networks [40]

– vertically sharing weights - Recurrent Neural Networks [41]

– skipping layers - Residuals Neural Networks [42]

– simply deactivating certain nodes - Dropout [43]

– forcing neurons to focus on certain pieces of input information - Attention
Mechanism and Transformers [44]

– adversarial learning - Generative Adversarial Networks [45]

Among the diversity of the neural networks, we will focus our brief theoretical
background only on those we analysed in our research studies [11], [12], [13].

Multilayer perceptron (MLP) [46] is a basic machine learning model, consisting
in at least three layers: input, hidden and output. Each neuron within wihtin a layer
is connected with all the neurons form both the previous and the following layers.
However, the neurons do not communicate within th esame layer. The inputs are
combined with certain initial weights in a weighted sum and the result is passed to
an activation function. This function’s output is fed into the next layer in a similar
weighted manner. The weights adjust during each training epoch as the network’s
target is to minimize a loss/cost function value, computed between the network’s
predicted output and the desired output. Thus, the MLP is known as the simplest
Feed Forward Neural Network (FFNN). Figure 1.1 illustrates a MLP arhitecture.
Study [46] theoretically describes the MLP together with some applications.

Our experiments described in [9] are obtained using a feedforward neural net-
work based the Text-to-Speech system [47]. Thus, the FFNN are suitable not only for
NLP tasks, but also in other various domains.

Recurrent Neural Networks (RNN) Applied in our experiments from [11], [12],
[13], Recurrent Neural Networks (RNNs) are a MLP-based neural network in which
the output of the current time step is conditioned on the output of the previous
time step. As a result, the RNNs are commonly used to model temporal sequences.
However, a major problem with vanilla RNNs is that they cannot model sequences
in which the temporal dependencies are stretched across multiple time steps.

The solution for this problem is to use more advanced network nodes, in which
an internal state of the node can memorize the data snippets which are of interest to
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FIGURE 1.1: A Multilayer perceptron architecture

the current prediction, or forget the irrelevant data parts. One such specialized node
is the Long Short Term Memory (LSTM) cell [41].

A LSTM cell (graphically depicted in Figure 1.2) contains the following elements:

• forget gate ft - a neural network (NN) with sigmoid activation

• input gate it - a NN with sigmoid activation

• output gate ot - a NN with sigmoid activation

• hidden state ht - a vector

• memory state ct - a vector

FIGURE 1.2: LSTM memory cell [48]

The input gate selects what new information should be stored in the current cell
at a time step t. The forget-gate expresses the amount of information which will be
discarded, while the output-gate will provide the activation to the final output of
the LSTM block. The hidden state is calculated from the cell state passed through an
activation function and element-wise multiplied with the output vector at the time
step t.

We applied the RNN architectures for our NLP experiments from [11], [12], [13]
described in Chapter 2.
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Convolutional Neural Networks (CNN) As described in [12], Convolutional Neu-
ral Networks (CNN), originally used in image processing, are another type of deep
networks largely used for the pattern recognition tasks.

A simple CNN architecture contains the following elements:

• a convolutional layer

• a non-linear activation layer

• a pooling (or sub sampling) layer

• a fully connected (softmax) output layer.

The convolutional layer defines a non-linear filter bank (or kernel), which is
shifted over the input features using a fixed stride and generates a multi-dimensional
feature map, which is processed by a non-linear activation function. The pooling
layer reduces the representation of the convolutional layer’s output, as well as de-
creases the memory requirements. In general, the polling layer is placed between the
convolutional layers. The features with the highest values (maxpool) are fed into a
fully connected layer, whose activations are finally passed into a softmax layer. The
output of the softmax function represents the estimated probability distribution over
the output labels. In some cases, a normalization layer is stacked on the pooling layer
to normalize the data, with mean 0 and variance 1. The normalization step ensures
the network’s stability.

For the NLP field, the input of the CNN architecture consists in sentences, para-
graphs or documents encoded as multidimensional matrices. Each smaller phrase
segmentation (word or character) represents a row within the input matrices. During
training, the CNN learns the text representation within the input language. Among
the various NLP domains were the CNN outperforms we mention Sentiment Anal-
ysis [49], [50], [51], Topic Modelling [52], [53], [54], Relation Extraction [55], Relation
Classification[56].

We applied the CNN architectures for our NLP experiments from [11], [12], [13]
but also for the Speech Synthesis tasks from [10]. The results are described in Chap-
ter 2 and Chapter 5 respectively.

1.4 NLP - core areas and applications

The research of the Natural Language Processing field is usually split into two main
categories (most often with a slight or uncertain border between them two):

1. Core Areas - the study of fundamental problems (Figure 1.3)

2. Applications - combine two or more core areas in order to solve more specific
practical problems (Figure 1.4)

Recent research studies [104], [105], [106] survey the state-of-the-art research
works. We summarize main works in Figure 1.3 and Figure 1.4, based on the two
categories above mentioned.

1.5 Sequence-to-sequence approach in the field of NLP

The sequence-to-sequence (seq2seq) architecture translates one sequence into an-
other. It is formed of two parts: an encoder and a decoder, each of them being a
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NLP core areas

Language Modelling creates a
model to estimate the likeli-
hood of a certain sentence to
appear in a given language.

Neural Language Modelling [57], [58]

CNN Language Modelling [59], [60]

Memory and Attention Mechanism
in Language Modelling [61], [62]

Character-Aware Neural Lan-
guage Modelling [63], [64], [65]

Word Embeddings
mikolov2013distributed , [66]

Parsing means splitting the input
text into smaller parts (words or

phrases) based on the grammar rules

Neural Parsing [68],
[69], [70], [71], [72], [73]

Transition based Dependency Pars-
ing [74], [75], [76], [77], [78], [79]

Generative Dependency and
Constituent Parsing [30],

[80], [81], [82], [83], [84], [85]

Semantics supposes deducing
and understanding the meaning
or words/phrases or documents

Semantic Comparison [86],
[87], [88], [89], [90], [91], [92]

Sentence Modelling [93],
[94], [95], [96], [97], [98], [99]Morphology studies word formation

from morphemes with affixes (prefixes
and suffixes) [100], [101], [102], [103]

FIGURE 1.3: NLP core areas with studies

separate neural network. The encoder is responsible for understanding the input
and representing it in a lower dimensional space. The output of the encoder will
then be used to condition the decoding network’s prediction. Figure 1.5 presents a
seq2seq model for the word "masa" as input and "masă" as output. The tags <SS>
and <SE> mark the start and the end of the sequence. The most prevalent archi-
tectures behind the encoders/decoders are the recurrent and convolutional neural
networks.

The model illustrated in Figure 1.5 was analysed in our research paper [12] as
we proposed to train an automatic diacritics restoration system for the Romanian
language. We applied the seq2seq architecture in other NLP tasks, such as lemmati-
zation [11] or POS tagging [13], all particularised for the Romanian language as well.
The experimental setup and results are discussed in Chapter 2.
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NLP applications

Information Retrieval [86], [107],
[108], [109], [110], [111], [112], [113]

Question Answering returns infor-
mation (answer) as an answer to a
query (question) [114], [115], [116]

Information Extraction

Named Entity Recognition
[117], [118], [119], [120], [121]

Event Extraction [122], [123], [124]

Relationship Extraction
[56], [125], [126], [127]

Text Generation

Poetry Generation [128],
[129], [130], [131], [132]

Joke and pun genera-
tion [133], [134], [135]

Story Generation [136], [137], [138],
[139], [140], [141], [142], [143], [144]

Text generation with GANs
[145], [146], [147], [148]

Text generation with VAEs
[149], [150], [151], [152]

Text classification [153],
[154], [155], [156], [157]

Text summarization
zhang2019pretraining ,

[158], [159], [160]

Machine Translation means au-
tomatic translate an input text
from one language to another

denkowski2017stronger , [162], [163],
[164], [165], [166], [167], [168], [169]

FIGURE 1.4: NLP applications with studies

ENCODER DECODER

m a s a

m a <SE>ăs

<SS>

FIGURE 1.5: Sequence-to-sequence architecture in NLP [12]

1.6 Evaluation methods

The neural NLP systems output are predictions of the results desired in a certain
task. The most common evaluation metrics which measures the NLP systems’ qual-
ity are described below. First, we define the following terms:

• TP = True Positive - number of correctly classified instances as belonging to
the class of interest

• TF = True Negative - number of correctly classified instances as not belonging
to the class of interest

• FP = False Positive - number of incorrectly classified instances as belonging to
the class

• FN = False Negative - number of incorrectly classified instances as not belong-
ing to the class
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1. Classification accuracy is determined by the ratio of the number of correctly
classified instances to the total number of classified instances [14].

Accuracy =
TP + TN

TP + TN + FP + FN
(1.1)

2. The sensitivity metric (as known in statistics domain) or recall metric (as known
in Information Engineering domain) is given by the ratio between the number
of correctly classified data as belonging to the class of interest and the sum of
the number of data correctly classified as belonging to the interest class and the
number of data incorrectly classified as not belonging to the class of interest.

Sensitivity = Recall =
TP

TP + FN
(1.2)

3. The metric of specificity is given by the ratio of the number of data correctly
classified as not belonging to the interest class and the sum of the number of
correctly classified data as not belonging to the interest class and the number
of data incorrectly classified as belonging to the class of interest.

Speci f icity =
TN

TN + FP
(1.3)

4. The precision metric is given by the ratio between the number of data correctly
classified as belonging to the class of interest and the sum of the number of
data correctly classified as belonging to the interest class and the number of
data incorrectly classified as belonging to the class of interest [171]:

Precision =
TP

TP + FP
(1.4)

5. The F1 score is the harmonic mean of the precision and recall.

F1 =
2

1
Recall +

1
Precision

=
TP

TP + 1
2 (FP + FN)

(1.5)

In our research papers [11], [12], [13], [14] we analysed the models’ performance
using the five evaluation metrics described above. However, as a system perfor-
mance depends on the task to be analysed, different evaluation metrics have been
proposed in clarkson2001improved , [172], [173], [174].
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Chapter 2

Addressing linguistic problems
using Machine Learning (ML)
models

2.1 Automatic Romanian Diacritics Restoration

In this subchapter we address the issue of automatic diacritics restoration (ADR) for the
Romanian language using the deep learning strategies. The method was introduced in our
original research paper [12].

2.1.1 Motivation

Automatic Diacritics Restoration (ADR) is the process of restoring the diacritic sym-
bols in the orthographic texts. The applications of this process are numerous and
include: spelling checkers, lexical disambiguation, part-of-speech tagging, natural
language understanding, etc. The lack of diacritics is predominant in electronic texts
where the user does not use adequate text editing software, or is not technologically
proficient so as to use the diacritic symbols specific to his or her native/acquired
language.

Most European languages contain different sets of diacritic symbols in their al-
phabets, the most numerous in French and Slovak. The set of diacritics used in
European languages based on the Latin alphabet are illustrated in Table 2.1.

Language Diacritics Language Diacritics

Albanian ç ë Italian á è é ì í ï ò ó ù ú
Basque ñ ü Lower Sorbian c̀ c̆ ĕ ł ń ŕ ś s̆ ź z̆
Breton â ê ñ ú ö Maltese ċ ġ ż
Catalan à ç è é í ï ò ó ú ü Norwegian å æ ø
Czech á c̆ é í n̄ ó r̄ s̄ ý z̄ Polish a̧ ȩ ć ł ń ó ’s ’z ż
Danish å æ ø Portuguese â ă ç ê ó ô ŭ ü
Dutch ë Romanian ă â î ş ţ
English none Sami á ï ĉ d- ń n, š t- ž
Estonian ä č ō ö ž Serbo-Croatian ć č d- š ž
Faroese á æ d- ó øú ý Slovak á ä č d’ é ĺ ñ ó ô ŕ š

t’ ú ý ž
Finnish ä å ö š ž Slovene č š ž
French á â æ ç é è ë ê î œ ù û ÿ Spanish á é í ó ú ü ñ
Gaelic á é í ó ú Swedish ä å ö
German ä ö ü ß Turkish ç ǧ ö ş ü
Hungarian á é í ó ö ő ú ü ű Upper Sorbian ć č ě ł ń ó ř š ž
Icelandic á æ ∂ é í ó ö ú ý Welsh ǎ ě ǐ ǒ ǔ w̌ y̌

TABLE 2.1: Diacritics in European Languages with Latin based alphabets
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The Romanian language uses 5 diacritic letters: ă, â, î, ş and ţ. Although not all the
words have alternative spellings with and without diacritics, in some cases, a miss-
ing diacritic could completely change a word’s meaning (e.g peste = over vs. peşte
= fish), while in other cases, the absence of the appropriate diacritic in the word’s
ending letter makes it impossible to discern between the definite or indefinite form
of a noun (mamă = a mother vs. mama = the mother).

Tufiş et al. [176] reports that between 25% and 45% of the Romanian words con-
tain diacritics, while in a random French text, only 15% of the words contain diacritic
symbols [177]. The diacritic percentage across the European languages is reported
in [178].

Motivated by the relevance of the diacritic restoration across various text-based
applications, we address the Romanian ADR problem using the sequence-to-sequence
deep learning architectures based on convolutional and recurrent neural networks.

2.1.2 Related work

With the increasing use of the electronic devices across different social and cultural
categories, the need for high-quality ADR applications is more prevalent, and so is
the number of published scientific studies. Simard [177] employs Hidden Markov
Models trained at word level on French texts. For the Vietnamese language, Nguyen
et al. [179] combine Adaboost and C4.5 decision tree classifiers with a letter-based
feature set in five different strategies: learning from letters, learning from semi-
syllables, learning from syllables, learning from words, and learning from bi-grams.

A deep learning approach for diacritics restoration is proposed by Náplava et. al.
in [180] and uses Bidirectional Neural Networks combined with a language model.
The model was tested for 23 languages, including among others: Czech, Slovak and
Romanian.

For the Romanian language, in particular, the works of Mihalcea et al. [178],
[181] explore instance based learning at letter level, using the Tilburg memory and
the C4.5 decision tree classifier, scoring an overall F-measure of 98.30 %.

Tufiş et al. [176] propose a Part-Of-Speech tagger and the use of two lexicons to
solve the ambiguity problem in Romanian ADR. An overall accuracy of 97.4 % is
achieved at word level.

Ungureanu et. al [182] propose a word classification schema, based on the oc-
currence of the diacritics in each word (words always written with diacritics, words
with no diacritics at all and words with different diacritical written pattern - words
which change their meaning as diacritics are missing, as shown in Section 2.1.1).
Then these categories are distilled into two dictionaries. During training and test-
ing, the two lexicons are used to improve the ADR results, obtaining an overall F-
measure of 99.34%.

In [183] Petrică presents a diacritics restoration system trained on unreliable raw
datasets. First, the correctly spelled sections are identified and used as training data
for the ADR. Second, the trained ADR is applied to the remaining parts of the initial
text.

The previously described approaches use language models and linguistic infor-
mation extracted from the texts at different levels. In this work, we propose a deep
learning approach to solve the ADR problem for Romanian using only grapheme
sequences, without any expert linguistic knowledge.
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Sequence-to-sequence learning

The sequence-to-sequence (seq2seq) [184] architecture is designed to handle input
and output sequences with different lengths. The most common applications for
this architecture include automatic machine translation, video captioning, speech
recognition and speech synthesis.

Broadly speaking, the seq2seq architecture is formed of two parts: an encoder and
a decoder, each of them being a separate neural network. The encoder is responsible
for understanding the input and representing it in a lower dimensional space. The
output of the encoder will then be used to condition the decoding network’s predic-
tion. Figure 2.1 presents a seq2seq model for the word "masa" as input and "masă"
as output. The tags <SS> and <SE> mark the start and the end of the sequence.
The most prevalent architectures behind the encoders/decoders are the recurrent
and the convolutional neural networks.

ENCODER DECODER

m a s a

m a <SE>ăs

<SS>

FIGURE 2.1: Sequence-to-sequence flow

The characteristics highlighted above make the seq2seq learning a good candi-
date for the Romanian ADR problem. Our systems [12] are based on convolutional
neural networks and recurrent neural networks, theoretically introduced in Chapter
1 and technically described in the next subsection.

2.1.3 Experimental setup

Training Data

For training and testing our models [12], we selected a subset of the CoRoLa text
corpus [185]. The subset contains 51.043 sentences with 1 million tokens and 63.194
unique words. The style of the text is belletristic. The corpus is not purposely build
for ADR tasks, but can be considered as a reliable source of correctly typed text
(i.e. containing the correct diacritics) in Romanian, as it was manually annotated
at word-level with several linguistic information. We subsequently split the dataset
into disjoint training (80%) and testing (20%) sets, each of them being individually
shuffled.

A few pre-processing steps were performed,including the following operations:

• converting text to lowercase

• striping the digits and punctuation

• striping the diacritics

• segmenting the text in trigrams

• creating pairs of input-target sequences
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• appending a start-character ("\t") and an end-character ("\n") to the target tri-
gram

An example of a pre-processed sentence is shown in Table 2.2. The obtained
input-output pairs for the chosen sentence are illustrated in Table 2.3.

TABLE 2.2: An example of a pre-processed sentence

Initial sentence "Mă uitasem la ceas, era încă ora 22.00."

Pre-processed sentence "ma uitasem la ceas era inca ora"

TABLE 2.3: Input-output trigrams for a chosen sentence

Input sequence Target sequence

ma uitasem la \t mă uitasem la \n
uitasem la ceas \t uitasem la ceas \n
la ceas era \t la ceas era \n
ceas era inca \t ceas era încă \n
era inca ora \t era încă ora \n

When an unknown input sequence is decoded, we begin with the starting char-
acter and use the decoder to predict the next character until the ending character
is generated. The trigrams were chosen to represent the context of the current se-
quence.

After the pre-processing steps, the train set ended-up containing 616.691 tokens,
while the test set contained 162.791 tokens.

System architectures

For our initial tests, we selected 2 ADR systems [180], [186] previously applied for
Romanian. The systems were retrained using our dataset, but preserving the original
parameter values.

Inspired by the architectures described in these two systems, we analyzed four
other architectures with various combinations of recurrent and convolutional layers.
For the implementation, we relied on Keras1 with the TensorFlow2 as backend. The
networks’ hyperparameters were tuned using a small development set. The results
were reported in our original research paper [12].

All the 6 architectures are described in the following subsections with the previ-
ously published works marked with an asterisk (*). All systems were trained over
50 epochs.

One layer LSTMs (ID: LSTM) In the RNN sequence-to-sequence architecture [12]
the encoder and the decoder both included one LSTM layer. A latent dimension
of 128 for both layers and a batch size of 512 were chosen. The input to the encoder
and to the decoder was one-hot encoding at character level. The input of the decoder
was also conditioned on the hidden state of the encoder. The output of the decoder
LSTM layer is sent to a softmax dense layer with a dimension equal to the length
of the one-hot encoded target character set. Figure 2.2a illustrates the design of the
RNN architecture.

1https://keras.io/
2https://www.tensorflow.org/
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INPUT LAYER

LSTM LAYER

`
DENSE
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FIGURE 2.2: The LSTM model architectures for the task of automatic
diacritics restoration

Stacked LSTMs (LSTM_stacked_*_) In order to improve the results, one addi-
tional LSTM layer was added to the encoder [12]. The newly obtained encoder was
tested in two different contexts. First, we used one LSTM layer for the decoder (ID:
LSTM_stacked_1 - Figure 2.2b). Then, another LSTM layer was stacked in the de-
coder (ID: LSTM_stacked_2). The model LSTM_stacked_1 was trained with a 256
latent dimension and a 128 batch size. For the model LSTM_stacked_2 a batch size
of 512 and a latent dimension of 128 were used.

Convolutional Sequence-to-Sequence (ID: CNN) In our experiments from [12],
the CNN architecture contains 3 convolutional layers with 128 feature maps and
a kernel of size 3, for both the encoder and the decoder networks. An attention
architecture with a softmax activation follows the 3-layered convolutional decoder
networks. The output is processed by another 2 convolutional layered architecture,
with a softmax dense output. Figure 2.3 illustrates the model structure. The model
is trained with a batch size of 1024 and a 128 latent dimension.

*RNN and CNN hybrid model (ID: hybrid_seq2seq) The RNN and CNN hybrid
model described in [186] uses two paths - at character level and at word level. For
the character path, an embedding layer feeds the input to 3 stacked CNN layers.
The word path goes through embedding and a bidirectional LSTM (biLSTM). The
two paths are merged by projecting words to characters based on a projection ma-
trix which is received as an additional input. Hence, the character and the word
embeddings are jointly learned. These embeddings are fed to a stack of 3 convolu-
tional layers. The output is predicted using a time distributed dense layer. For the
experiments described in [12] we trained the network with a batch size of 32. The
system’s architecture is illustrated in Figure 2.4.
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FIGURE 2.3: The CNN model architecture for the task of automatic
diacritics restoration

*RNN with language model In [180] a combination of character-level recurrent
neural network based model and a language model are applied to automatic dia-
critics restoration.3 The core model uses a bidirectional LSTM which deals with the
previous and the snext letter contexts in the sequence.

The bidirectional RNN contains 2 stacked layers with residual connections, com-
posed of 300 LSTM units. A batch size of 200 was chosen. The model language is
based on the left-to-right beam search. At each time step, the output of the biLSTM
layers is reduced by a fully connected layer to v-dimensional vectors, where v is the
size of the output vocabulary. A non-linear rectified linear unit (ReLU) activation
function is applied to the reduced vectors. The final output layer uses a softmax
activation.

2.1.4 Evaluation and discussion

All the 6 system architectures introduced in [12] were evaluated using the classifica-
tion accuracy metric, which is defined as the ratio between the correct predictions and
the total number of samples. We computed the accuracy at three different levels:

3https://github.com/arahusky/diacritics_restoration
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trigram, word and character level. At trigram and word level the accuracy reflects
the number of correct predictions made by the system overall. At character level, we
computed the accuracy only for the characters which may be written with diacritic
symbols (a, i, s, t). Accuracy results for all the systems are presented in Table 2.4.

A separate set of results is shown in Table 2.5, where the 4 ambiguous letter sets
in Romanian (a-ă-â, i-î, s-ş, t-ţ) were analyzed individually.

TABLE 2.4: Network parameters and accuracy results

Architecture ID Latent dimension Batch size Accuracy

3-gram level Word level Character level

LSTM 128 512 75.50% 89.98% 71.61%
LSTM_stacked_1 256 128 79% 93 % 78%
LSTM_stacked_2 128 512 84% 94 % 82%
CNN 128 1024 91% 97 % 89%
hybrid_seq2seq[186] N/A 32 77% 92% 84%
LSTM_Language_model [180] 300 200 84 % 96 % 90%

The highest accuracy in terms of trigrams and words, was achieved for the con-
volutional network (ID CNN), while the single-layer LSTM system (ID LSTM) had
the lowest accuracy. One explanation can be found in the recurrence of the LSTMs,
which may require larger data context, as opposed to the CNN, which uses the at-
tention layer and the sliding windows (kernels) to simulate the recurrence.
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TABLE 2.5: Accuracy results for individual ambiguous pairs of the
best performing system

Architecture ID Accuracy

a-ă-â i-î s-ş t-ţ

CNN 93.51 % 99.44 % 98.39 % 97.94 %

However, at character-level, the system described in [180] outperforms all the
other systems. The justification for this result can be the use in [180] of a language
model together with the RNN, while our systems restore the diacritics without any
additional linguistic information.

2.1.5 Conclusions and future work

In [12] we have compared 6 neural networks architectures with the objective of ob-
taining automatic diacritics restoration systems, applied to Romanian language. All
the models were trained using only parallel input-output pairs of texts, with and
without diacritics. As input to the sequence-to-sequence architectures we used the
character-level one-hot encoding. However, it is a common practice in NLP to en-
code the words or characters using multidimensional embeddings obtained from
large amounts of text data. These embeddings would allow the network to have an
initial estimate of the characters’ function in a language. So as future work, we in-
tend to substitute the one-hot encoding with letter or word embeddings, and also to
include additional linguistic or semantic information.

In our experiments presented in [12] we split the data into trigrams, both for
training and for testing. Each network received a diacritic-stripped trigram and pre-
dicted the entire corresponding sequence with diacritics. We intend to experiment
with other N-gram, allowing the network to capture more context. One other mean
of improving the results is to predict the diacritics only for the sequence-ending
word, considering all previous words to be correctly typed.

In addition, we are planning to investigate other types of fully convolutional
neural networks, based on the dilated convolutions combined with attention mech-
anisms, architectures largely used in the Machine Translation and the Speech Syn-
thesis fields, but unexplored in the ADR domain.

2.2 Automatic Romanian lemmatization

This subchapter describes a deep learning sequence-to-sequence approach to improve the task
of automatic Romanian lemmatization. We have introduced the methods in our original
research paper [11].

2.2.1 Motivation

Recent works in the deep learning field focus on using as few input features as possi-
ble, offering an end-to-end strategy fed only with (labelled) data needed for the task.
For instance, in the text-to-speech scenario [187], [188], to create synthetic voices,
only pairs of written text and corresponding audio are necessary and it is the sys-
tem’s responsibility to learn a mapping between the lexical and the acoustic features.
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TABLE 2.6: Literature results for Romanian Lemmatization.

Reference Dataset Context Architecture Accuracy

Boroş [200] DEX POS Perceptron 94
Chakrabarty et al. [201] Romanian-RRT Semantic embedd. BiLSTM 94.32
Boroş [202] Romanian-RRT POS+WE BiLSTM + LSTM 94.79
Yildiz et al. [203] ro-rrt BiLSTM+ vector repres. LSTM + BiLSTM 96.54
Chrupala et al. [204] MULTEXT-EAST POS +Lexical feats Search alg. + Classifiers 97.78
Qi et al. [205] ro-rrt LSTM + dict. LSTM + Attention 97.95
Kanerva et al.[206] Romanian-RRT POS taggs BiLSTM + LSTM 98.25

Straka et al. [207] Romanian-RRT BERT+WE+CWE LSTM 98.59 (F1-score)

Dumitrescu et al. [208] SIGMORPHON 2018 N/A BiLSTM + LSTM 88 (reinflection accuracy)

Although it seems that no additional textual or lexical data is needed, the text pro-
cessing tasks, such as phonetic transcription [47], lemmatization [189], [190] or part
of speech (POS) tagging [191] can improve the quality of the synthesised speech.

The study addresses the lemmatization, as this intends to be a preliminary text
processing step in the task of creating synthetic voices with emotional expressivity.
Romanian is a low resourced language considering the lack of emotional labelled
corpora, thus it is a challenge to develop a method to automatically label the text
based on the emotional content level. A range of studies addresses the connection
between the word’s lemma and emotions within a text. In [192] the lemma is used to
measure the level of emotion in political discourse, but the method can be extended
to other domains. The authors of [193] and [194] propose lemma-based approaches
to analyze the texts for preventing a suicide behaviour. In [195] lemma is used to
create an emotion lexicon. Apart from detecting emotions in texts, lemma is efficient
to reduce the complexity of the vocabulary in the fields like topic identification [196],
text summarisation [197], word search [198], machine translation [199] or keyword
spotting [198].

In the experiments presented in [11] three types of Deep Neural Networks ar-
chitectures have been compared. The Long Short-Term Memory (LSTM) cells and
Convolutional Neural Networks (CNN) with Attention layer have been chosen to
train 24 systems with three types of input-output data: simple pairs composed of
word and corresponding lemma, tuples of words enriched with morphological in-
formation and the corresponding lemma and, finally, trigrams (sequence of three
words, with or without morphological description) and their corresponding lem-
mas. In this last scenario, lemmas were predicted either for the entire sequence of
three words or only for the word in the middle of the trigram. The analyzed data
is part of two Romanian corpora: the Romanian Explicative Dictionary (DEX)4 and
the CoRoLa corpus [185].

2.2.2 Related work

In recent years a large number of research papers have analysed the lemmatization
problem using the deep learning strategies. Table 2.6 and the following related work
discussion summarizes the different studies in the Romanian lemmatization field.
However, due to the different datasets, data versioning and experimental details,
the results are not directly comparable.

In [200] Boroş implements a framework based on a perceptron-like algorithm
with a margin-dependent learning rate (MIRA [209]) and solves NLP tasks such as
syllabification, lemmatization, phonetic transcription and lexical stress prediction

4https://dexonline.ro/
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applied on Romanian language. For lemmatization the overall accuracy was equal
to 94% (initially, the accuracy was computed separated for every POS class).

Chakrabarty et al. [201] use two successive BiLSTM structures to perform a con-
text sensitive language independent lemmatization. The first BiLSTM network ex-
tracts the character level dependencies, while the second network learns contextual
information for the given word. For Romanian an accuracy of 94.32% was obtained.

The NLP-Cube5 framework described in [202] performs sentence splitting, tok-
enization, lemmatization, tagging and parsing for 82 languages. For the lemmati-
zation task the system is composed of a bidirectional LSTM encoder and a simple
LSTM decoder leading to a 94.79% accuracy when applied to Romanian language.

In [203] Yildiz et al. present Morpheus, a lemmatizer and morphological tagger.
The tools follows the encoder-decoder architecture, using LSTM cells and dedicated
decoder for each task. The lemmatizer used an extra bidirectional LSTM to encap-
sulate the word’s context. Unlike most lemmatizers which directly predict the char-
acters of the word’s lemma, Morpheus also outputs the minimum edit operations
between the word and its lemma. For Romanian language, Morpheus achieves an
accuracy of 97.88% for edit operations and 96.54% when predicting characters. The
Romanian-RRT dataset6 was used.

Chrupala et al. [204] describe Morfette, a modular system for morphological tag-
ging and lemmatization, based on searching algorithms, the shortest sequence of
instructions (shortest edit script - SES [210]) and Maximum Entropy classifiers. The
two modules can be used together to improve the input information (one’s input
uses the other’s output) or separately. The lemmatizer’s input consists of word-
lemma pairs enriched with lexical features (prefixes and suffixes of a certain length,
predicted POS, spelling pattern). Morfette is analysed on three morphologically rich
languages: Polish, Spanish and Romanian. For the Romanian language the lemma-
tizer was trained on the MULTEXT-EAST7 dataset obtaining an accuracy of 97.78%.

Qi et al. [205] present Stanza8, a Python multilingual NLP tool, processing 66
languages. To predict the lemma, Stanza uses a pair of a dictionary-based and a
sequence-to-sequence lemmatizers with LSTM cells and attention mechanism. For
the Romanian language, an accuracy of 97.95% was obtained for the Romanian-RRT
dataset.

Kanerva et al. [206] use a two BiLSTM layered encoder enriched with learned
character and POS tag embeddings and a decoder composed of two unidirectional
LSTM layers with an input feeding attention on top of the encoder’s output. The
system was trained for 52 different languages. The accuracy of the Romanian lem-
matizer was 98.25%.

In [207] Straka et al. compare the contribution of the three conceptualized em-
beddings (BERT[211], Flair[212] and ElMo[213]) within a LSTM based system en-
riched with word embeddings (WE) and character-level word embeddings (CWE).
The analyzed tasks were POS tagging, lemmatization and dependency parsing for
a number of 54 languages. For the particular task of Roamnian lemmatization, the
Romanian-RRT dataset was chosen. The highest F1-score of 98.59% was achieved
when both the BERT and the Flair embeddings were used.

5https://github.com/adobe/NLP-Cube
6https://universaldependencies.org/treebanks/ro_rrt/index.html
7http://nl.ijs.si/ME/
8https://github.com/stanfordnlp/stanza

https://github.com/adobe/NLP-Cube
https://universaldependencies.org/treebanks/ro_rrt/index.html
http://nl.ijs.si/ME/
https://github.com/stanfordnlp/stanza
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TABLE 2.7: The following family of words preserves the stem, while
the lemma differs.

Word Lemma Stem

copilas, ul = infant copilas,
copilandru = youth copilandru
copilărie = childhood copilărie copil = child
copilări = to childhood copilări
copilit, ă = little girl copilit, ă
copilăres, te = childishly copilăresc

In [208] Dumitrescu et. al describe an universal morphological reinflection sys-
tem based on an attention-free encoder-decoder neural architecture with a bidirec-
tional LSTM for encoding the input sequence and a uni-directional LSTM for decod-
ing and producing the output. This architecture is evaluated on the SIGMORPHON
2018 [214] dataset, with data from 86 languages. For the Romanian language the
accuracy of the reinflection task was 88%.

2.2.3 Lemmatization - theoretical background

Lemmatization is the process of determining the word’s dictionary form, called
lemma. In the linguistic fields, through lemmatization, all flexional forms of a word
are grouped together to be analysed as a single entity.

The lemmatization is language dependent and adheres to certain rules. In Roma-
nian, the lemma of a noun the masculine singular nominative, while a verb’s lemma
is the infinitive form.

Noun copilandre (plural,feminine) → copilandru (singular, masculine) = youth
Verb merg = (I) go, mergeam = (I) went, mersesem = (I) had gone → (a) merge (infinitive) = (to) go

In contrast to stemming, which returns the part of the word that never changes
even when different forms of the word are used (the stem), lemmatization depends
on the word’s meaning or context and on the morphology of the word (Table 2.7).

Although the stemming algorithms are faster and easier to be applied in word
searching applications, they have lower accuracy in the case of homonyms (words
spelled the same but with different meaning). For instance, the word ouă (En: eggs)
has the same stem ou (En: egg), in both of the examples below, regardless the part of
speech:

Noun Am cumpărat patru ouă. (En: I bought four eggs.)
Verb Găinile ouă. (En: The hens lay eggs)

while the lemma differs based on the word’s meaning and part of speech:

Noun ouă → ou (En: egg)
Verb ouă → (a) oua (En: to lay eggs)

Ambiguous words

Based on semantical and on morphological contexts, the lemmatization methods can
be grouped in two major categories:

• context-aware methods - the system knows information regarding the context in
which the word appears (sentence context - for meaning, POS tag- for morpho-
logical information, etc.)
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TABLE 2.8: The distribution of samples for each POS category for
DEX dataset (left) and CoRoLa dataset (right).

POS - DEX dataset Abreviation Percentage

Noun n 41.28
Adjective a 28.93
Verb v 28.00
Unique form u 1.11
Invariant i 0.57
Pronoun p 0.10

POS - CoRoLa dataset Abbreviation Percentage

Noun n 50.08
Verb v 26.77
Adjective a 19.00
Adverb r 2.27
Pronoun p 0.54
Apposition s 0.32
Numeral m 0.30
Conjunction c 0.15
Hyphen @ 0.18
Abbreviation y 0.17
Determiner d 0.16
Article t 0.05
Particle q 0.01

• individual word-based methods - the system predicts the lemma knowing only
the given word, without any additional information

The advantage of the first approach is the higher accuracy rate when predicting
lemma for ambiguous words, as the system can benefit from the contextual infor-
mation provided. The second strategy can be improved by listing all the possible
lemmas of the given words. In this way, if the predicted lemma belongs to the word’s
lemmas list, then it will be considered correct, as the system’s total unawareness of
the context was taken into consideration.

Being a rich inflectional and morphological language, the Romanian ambiguous
words form a consistent category which is challenging for the lemmatization task.
The ambiguity can appear either between different POS classes (as an adverb, poate
= maybe has the associated lemma "poate", while, as verb poate = (he) can with "putea"
as lemma) or within the same POS class (the plural noun torturi means both cakes and
tortures, depending on the pronunciation; thus it has two lemmas - tort and tortură
respectively).

2.2.4 Experimental setup

To train the systems presented in [11], we used two different datasets. The first
dataset is the Romanian Explicative Dictionary9(ID: DEX) which contains 1.158.194
word forms, each associated with its lemma and part of speech tag. The words
are clustered in six major categories based on the part of speech: nouns, adjectives,
verbs, pronouns, invariables (adverbs, proper names) and unique forms (interjec-
tions, archaic words, Latin names). Table 2.8 contains the distribution of samples for
each POS category.

The second dataset is the CoRoLa10 corpus [185] which contains texts from dif-
ferent functional styles: belletristic, scientific, publicistic, official. In this work the
belletristic subset was chosen. It contains 51043 sentences with approx. 1 million
tokens and 63.194 unique words. Each token belongs to one of the thirteen POS cat-
egories: noun, verb, adjective, adverb, pronoun, apposition, numeral, conjunction,
hyphen, abbreviation, determiner, article and particle.

9https://dexonline.ro/
10http://CoRoLa.racai.ro/
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TABLE 2.9: Datasets description

Dataset Number of samples

Total Training Testing

DEX 1.158.194 926.556 231.638
Corolla Belletristic - trigrams 753.490 602.792 150.698
Corolla Belletristic - one word 76.417 61.134 15.283

Several pre-processing steps were performed and include the following opera-
tions:

• converting text to lowercase

• striping the digits and punctuation

• splitting sentences into words (for the CoRoLa dataset)

• creating pairs of input (the word) - target (corresponding lemma) sequences

• appending a start-marker ("\t") and an end-marker ("\n") to the target word

Both datasets were subsequently split into disjoint training (80%) and testing
(20%) sets (Table 2.9), each of them being individually shuffled before the splitting.
For the experiments evaluated in this study, the datasets were split at lemma level,
ensuring that the same lemma do not appear both in train and test.

Input Data

The neural networks were fed with pairs of (word-lemma). The input data is one-
hot encoded, thus the words become bidimensional MxN sparse matrixes, where M
is equal to the longest word’s length and N is the set of characters that forms all the
sequences (number of letters which forms the dataset’s alphabet).

First, the systems were forced to learn as much information as possible only from
simple pairs of (word-correspondent lemma) (Input type: word). Then, the part of
speech (POS) for every single word from the DEX dataset was appended (Input type:
word + POS). During the training, the input consists of the word and the paired POS
and the system predicts the corresponding lemma: (word|POS → lemma).

Example: (strugurelui| n → strugure)
En. grape’s|n (n=noun) → grape

In the same idea of adding relevant contextual information, for each word, a
context was added, by using a window size of three neighboring words (Input type:
trigrams) thus obtaining trigrams. For this scenario, as the DEX dataset contains only
isolated words, only the belletristic subset of the CoRoLa corpus could be used. An
example of an input-output processed sentence is given below.

Dar nimeni nu venise în urma ei. (En. But no one had come after her.)
⇓

Input sequence Target sequence
dar nimeni nu dar nimeni nu
nimeni nu venise nimeni nu veni
nu venise în nu veni în
venise în urma veni în urma
în urma ei. în urma el
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For the trigrams scenarios, two strategies have been tried. First the systems pre-
dicted the lemmas for the entire sequence of three words. By analysing the results, it
was observed, in most of the cases, the lemma was correctly predicted for only two
out of the three words. Thus, the systems were trained to predict the lemma only for
the word from the middle (Input type: trigrams middle-lemma).

Architectures

For the sequence-to-sequence lemmatization task three different neural network ar-
chitectures were tested. All the systems were trained for 300 epochs. The code
was implemented in Python using the functional Application Programming Inter-
face (API) of Keras toolkit11 with a TensorFlow backend12 and run on a system with
4 GPUs (Nvidia GeForce RTX 2080 Ti, 11GB memory).

In the first experiments, both the encoder and the decoder contain a single LSTM
layer. Based on initial tests, the batch size was set to 512 and the latent dimension of
the hidden layers to 256. Figures 2.5a illustrates the system’s architecture. Aiming
to improve the system accuracy, the encoder and the decoder were enriched with
one or two additional LSTM layers resulting a stacked LSTM hierarchy described in
Figure 2.5b. Based on initial tests, the system was trained using a batch size of 256
and a latent dimension of 128.

In a last scenario a convolutional architecture with attention module was imple-
mented. Both the encoder and the decoder are composed of 3 convolutional layers
with 128 feature map and use the ReLU activation function. The decoder is followed
by an attention structure with a softmax activation. The decoder’s output is passed
through 2 additional convolutional layers with a softmax activation. A final dense
layer provides the system’s output. Figure 2.5c describes the network’s architecture.
A batch size of 512 was chosen after preliminary tests.

2.2.5 Results and Discussions

Each architecture described in Figure 2.5 from [11] is trained using each dataset indi-
vidually, with and without additional POS annotation. For the CoRoLa dataset, the
trigram scenario was also analysed, thus, it resulted 18 systems trained using data
from CoRoLa (see Table 2.11c) and 6 systems trained over the DEX dataset (see Ta-
ble 2.11a). All the 24 systems were evaluated with the classification accuracy metrics,
which is expressed as the ratio between the correct predicted items out of the total
samples. The accuracy was measured at different levels: trigram (CoRoLa subset),
word and character level (for both datasets).

Ambiguous words. In order to solve the ambiguity problem of words with mul-
tiple lemmas, a dictionary of accepted lemmas was built for each dataset. More pre-
cisely, we paired each word with a set of lemmas, as illustrated in Table 2.10. During
evaluation, if the predicted lemma belongs to the given word’s lemma dictionary
then it was considered to be correct. The lemma dictionary is necessary even when
POS context is added as ambiguity can exist within the same POS class when no ad-
ditional morphological information is given (genre, case or verb tense), as illustrated
in Table 2.10c.

The results for the DEX dataset are described in Table 2.11a. The one layer LSTM
based architecture achieved the highest accuracy rate at both word and character

11https://keras.io/
12https://www.tensorflow.org/
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(A) The LSTM model architecture. Both the en-
coder and the decoder are composed of one LSTM
layer. The size of the encoder’s input layer is given
by the length of the dataset’s alphabet. The size
of the decoder’s input layer is equal to the length
of the longest target sequence. The output of the
decoder is passed to a dense layer with a softmax

activation.

(B) The LSTM stacked model architecture. The en-
coder is composed of three LSTM layers. The out-
put of the third layer of the encoder is passed to
both LSTM layers of the decoder. The result is fed

to a dense layer with a softmax activation.

(C) The CNN model architecture. The encoder and
the decoder contain an input layer and three convo-
lutional layers. The outputs from both the encoder
and the decoder are passed to an attention module.
The obtained output is concatenated again with the
decoder’s output and fed to two convolutional lay-
ers. A fully connected layer with a softmax activa-
tion is applied to compute the final output of the

network.

FIGURE 2.5: Sequence to sequence model architectures for the
lemmatization task
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TABLE 2.10: Illustrating the dictionary of accepted lemmas

Word Meaning Lemma

Torturi Birthday cakes (Noun. pl. ) tort
Torturi Torments (Noun pl.) tortură

(A) same POS

Word Meaning Lemma

Nouă Somenthing new (Adj. fem) nou

Nouă Nine (Numeral) nouă

(B) different POS

Word Dictionary of lemmas

nouă nou nouă
torturi tort tortură

(C) Dataset entry

level. When additional POS information was provided, the system’s accuracy in-
creased by 3.39% at word level and by 2.14% at character level.

Unlike the DEX dataset, for the CoRoLa belletristic subset, the system using the
CNN layers [11] performs better at word and trigrams level (Tables 2.11b and 2.11c).
At character level, the stacked LSTM network achieves the best results.

One explanation may be the amount of training data: the DEX dataset contains
over 900.000 samples compared to only 60.000 samples in the CoRoLa subset. Even
if only a small amount of data is available, the CNNs are faster as they are using
attention layers and kernels to simulate the context and the recurrence of the data.

On the other hand, the LSTM architecture presented in [11] not only fails to pre-
dict the correct lemmas, but it also outputs more lemmas than necessary. For in-
stance, in 13% of the trigrams cases, the LSTM based system predicts the appropriate
lemmas for the first one or two words from the input sequence while the rest of the
output is series of arbitrary lemmas. This means that the end-sequence marker ("\t")
is not correctly predicted. The POS additional information helps all the networks to
learn the context from the data, thus the accuracy rate increases by almost 5%.

2.2.6 Conclusions and future work

In [11] we analysed 24 systems based on deep neural networks in the context of
the Romanian lemmatization. The systems were trained on labelled pairs of words
and the corresponding lemmas, using at most the part-of-speech tag as morpholog-
ical information. The input data was one-hot encoded and then passed through the
encoder-decoder-based architectures, within a sequence-to-sequence approach. The
scope of this study was to use as few lexical input information as possible, as the
analysed language offers few corpora with completed annotated texts. Apart from
fine tuning the network’s hyperparameters during training or enriching the input
text’s metadata, humans can not interfere to improve the learning process in this
end-to-end scenario.

As future work, inspired by other studies in the lemmatization task, more types
of encoding, such as word embeddings or contextualized embeddings (BERT), will
be investigated. In order to leverage the learning process, in [11] the input data
encapsulated the lexical and semantic context using n-grams with a sliding window
of three neighboring words. Other words window sizes (of five, seven, etc.) will be
investigated and their input within the systems will be analysed. Besides the CNN
and the LSTM layers, other types of neural networks will also be explored, such as
the bidirectional LSTMs, the gated recurrent units (GRU), or only attention based
architectures, which are already frequently applied in other text processing tasks.
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TABLE 2.11: Network parameters and accuracy for each dataset. Best results are marked in
bold. At word level, the columns with ambig. lemma and without ambig. lemma refer to the

same target data but check the dictionary created for the words with multiple lemmas.

(A) The DEX dataset.

No. Input Architecture Latent Batch
Accuracy

type dimension size
word level

char
with ambig. without ambig. levellemma lemma

1 LSTM 256 512 88.20 95.93 97.29
2 word LSTM_stacked 128 256 88.30 94.64 97.17
3 CNN 128 512 90.36 95.83 92.82

4 word LSTM 256 512 98.10 99.32 99.43
5 + LSTM_stacked 128 256 97.05 98.07 99.12
6 POS CNN 128 512 97.39 98.36 98.40

(B) The CoRoLa dataset with one word as input.

No. Input Architecture Latent Batch
Accuracy

type dimension size
word level

char
with ambig. without ambig. levellemma lemma

7 LSTM 256 512 68.03 75.00 88.38
8 word LSTM_stacked 128 256 72.08 79.64 90.68
9 CNN 128 512 78.51 86.07 84.17

10 word LSTM 128 512 76.77 77.36 89.76
11 + LSTM_stacked 128 256 86.55 87.22 95.05
12 POS CNN 128 512 90.72 91.35 94.23

(C) The CoRoLa dataset with trigrams as input

No. Input Architecture Latent Batch

Accuracy

type dimension size

trigram level word level char

with with with ambig. without ambig. levelambig. ambig. lemma lemma

13 LSTM 256 512 88.69 92.49 97.17 98.58 96.97
14 trigrams CNN 128 512 89.56 94.15 98.01 99.69 94.82
15 stacked_LSTM 128 256 75.79 79.76 92.12 93.77 91.70

16 LSTM 256 512
N/A N/A

93.86 95.21 93.28
17 trigrams CNN 128 1024 97.07 98.32 96.74
18 (middle-lemma) stacked_LSTM 128 256 96.61 95.28 94.86

19 LSTM 256 512 62.48 62.84 85.15 85.33 85.05
20 trigrams CNN 128 512 95.86 96.49 98.87 99.09 97.54
21 + POS stacked_LSTM 128 256 93.31 93.88 97.71 97.91 97.62

22 trigrams LSTM 256 512
N/A N/A

98.07 98.07 98.43
23 + POS CNN 128 1024 98.52 98.52 98.11
24 (middle-lemma) stacked_LSTM 128 256 98.83 98.83 98.78
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Although the transformer architectures gained popularity in solving NLP tasks for
English, Mandarin or other rich resourced languages, we have to analyze the impact
on the training process of the limited amount of data if we want to apply these
systems to Romanian language.

2.3 Automatic Romanian Part of Speech tagging

In this subchapter we address the issue of automatic Part of Speech tagging for Romanian
words using LSTM networks. The method was introduced in the original research paper
[13].

2.3.1 Motivation

Besides diacritics restoration and lemmatization, another important task in the NLP
field is the part of speech (POS) tagging. It means to determine the part of speech of
a given word, often enriched with morphological or syntactical information.

Depending on the annotation level, in the Romanian language we can discrimi-
nate three types of tagsets (as exemplified in Table 2.12).

Input Copilăria

RPOS N
MSD Ncfsry

CTAG NSRY

TABLE 2.12: The tagsets illustrated for the word Copilăria (en. Child-
hood)

• RPOS - The simplest one is the root POS (RPOS), which refers to identify only
the part of speech of the word (noun, adjective, verb, adverb, preposition, con-
junction, numeral, article, interjection, pronoun) and can be extracted from the
dictionary entry of the word’s lemma.

• MSD - The Morpho-Syntactic Descriptions (MSD) [215] contains more gram-
matical information, depending on the part of speech of the word. For exam-
ple, if we analyse a noun, the MSD tagset offers information about the type
(common or proper), number (singular or plural), gender (feminine, mascu-
line or neuter), case (nominative, genitive, accusative, dative, vocative, direct,
oblique), definiteness and clitic.

• CTAG [216] (C-tagset)- contains maximum 3 additional information to RPOS,
preserving only the ambiguous characteristics from the MSD tagset. For in-
stance, if we have to analyze a noun, the case and the number are sufficient to
describe the word, as the other descriptors (gender, type, definiteness or clitic)
can be recoverable form the word’s form.

There are two major difficulties when we want to determine the POS of a word.
The first one refers to the homographs, the words which share the same written form
but have different meanings in different contexts. The second problem refers to rich
inflectional languages, which is the case of Romanian: declination and inflections of
the word are not regular. Thus, to determine the POS, hand-crafted rules or contex-
tual information are needed
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2.3.2 Related work

The POS tagging is essential in tasks like machine translation, textual information
extraction, speech recognition or speech synthesis. In order to solve the automatic
POS tagging, several tools of text processing have been developed. One first attempt
consists on using rules-based or probabilistic methods (Maximum Entropy Classi-
fiers, Hidden Markov Models, Bayesian Networks or Conditional Random Fields),
which lead to unsatisfactory results[217] when applied to the rich inflectional lan-
guages like Romanian. Thus, the use of the machine learning techniques came as a
solution to improve the POS taggers accuracy.

Numerous studies analysed the Romanian POS tagging problem. The results are
summarized in Table 2.13 and described in [13].

In [216] Tufis et. al combine a language model (build with a tiered tagging with
C-tagset) with a post-processor based on probabilistic methods and reconstruct the
MSD tag with an accuracy of 98.39%.

To the best of our knowledge, the first attempt of using neural network in the
task of POS tagging is described in [217]. Boroş et. al implement a feed forward
neural network combined with genetic algorithms to automatic determine the MSD
tagsets of Romanian words. The reported accuracy was 98.19%.

The manual rule construction problem in the task of POS tagging was analysed
in [218] and [219]. The authors combined statistical models and rules-based system
that classifies the tagging errors.

The BALIE multilanguage system described in [220] uses machine learning tech-
niques and the WEKA framework to predict the POS tags. For the Romanian lan-
guage, an accuracy of 95.30% was reported.

Using a Naive Bayes model with a word database, Teodorescu et. al [221] ob-
tained an accuracy of 96.12%.

Authors Method Accuracy Tagset

Tufis & Mason [216] Probabilistic 98.39% MSD
Boros & Dumitrescu [217] Deep Neural Networks 98.19% MSD
Simionescu [219] Probabilistic & Rule-based 97.03% MSD
Teodorescu et al. [221] Probabilistic 96.12% Root POS
Frunza et al. [220] Machine Learning 95.30% Root POS

TABLE 2.13: POS-tagging accuracy results for Romanian reported in
the literature

Having these studies as a base for the Romanian POS tagging, in [13] we anal-
ysed the use of neural network in predicting the word’s POS. Precisely, inspired by
other works [222], [223] which applied the LSTM in the POS tagging for foreign
languages, we investigated the use of this type of network for Romanian. These
previous research studies demonstrated that LSTM not only is applicable for low
resourced languages, but it also is a proper candidate for determining the correct
POS when extended tagsets exist. In [13] we compared the LSTM networks with a
sequence-to-sequence architecture, also based on LSTM cells.

2.3.3 Experimental setup

Systems and architectures

In [13] we analysed the use of LSTM networks for the task of predicting the POS
of a given word. As described in the section 1.3, the advantage of this type of ar-
chitecture lays in the possibility of using the information from the previous step of
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learning, which is essential in the text processing tasks, as the words and the letters
are interconnected. In [13] the encoded input data is passed through a LSTM layer
and the result is processed by two stacked dense layers, as illustrated in Figure 2.7a.
The second dense layer is the output layer and has as many nodes as the number
of possible POS tags. The latent dimension of the LSTM layer was chosen based on
initial tests and is between 64 and 1024.

Besides the LSTM architecture, a sequence-to-sequence model was implemented
for the task of predicted the MSD tag. Both the encoder and the decoder are com-
posed of LSTM layers. The system’s architecture is illustrated in Figure 2.7b. The
sequence to sequence architecture’s flow is illustrated in Figure 2.6 and is described
in section 1.3.

ENCODER DECODER

a c a s ă <SS>

R g <SE>

FIGURE 2.6: Sequence-to-sequence model example: the system pre-
dict the CTAG for word acasă

The systems learns from pairs of input-target data, both obtained form initial
texts, divided in sequence of words with a sliding window of 3 to 5 words. An input
example is given below, where # and @ are the start and the end characters of the
target sequence:

Input sequence: ’Flori pentru mama’
Target sequence: ’#NSN S NSY@’

All the architecures and experiments were implemented using Python 3.7 using
Keras library13 with Tensorflow backend14.

POS tagsets

In [13] all the experiments were run for the Romanian language. We analysed the all
three tagsets: RPOS, MSD and CTAG, described in Tables 2.14a and 2.14b.

Tagset No. of tags used

Basic 13
MSD 334

CTAG 89

(A) Number of tags per tagset

Afpms Ncfpry

A Adjective N noun

f qualificative c common

p positive f feminine

m masculine p plural

s singular r nominative

y definite

(B) MSD tag examples for an adjective (plin - en.
full) and a noun (mişcările - en. moves)

TABLE 2.14: Illustrating the POS tagsets

13https://keras.io/
14https://www.tensorflow.org/
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INPUT
DATA

INPUT LAYERLSTM LAYER

Output LayerDENSE LAYER

Output Layer

DENSE LAYER

DENSE LAYER

Intermediate
Layer

(A) LSTM with dense layers model

INPUT LAYER

LSTM LAYER

` DENSE LAYER

ENCODER DECODER

INPUT LAYER

LSTM LAYER

Size: no. of encoder tokens
(no. of letters from the

alphabet)

Size: no. of decoder tokens

Size: latent dimension

Size: no. of decoder tokens
(length of the longest target 

sequence)

Size: latent dimension

SOFTMAX
LAYER

(B) LSTM sequence-to-sequence model

FIGURE 2.7: Systems architectures for the task of POS tagging

Datasets

The systems presented in [13] were trained using three different datasets. The ma-
jority of the experiments were performed using the the Simionescu’s dataset [218]
(WPT15), developed based on the DexOnline database16 and Wikipedia17. For the
RPOS prediction, we trained the systems using the first letter from the MSD tagset
provided in WPT. For the words with multiple tags, we analysed two scenarios:
firstly, we considered as a correct output any POS tag of the word (systems marked
with an asterisk in Table 2.16), then we have looked only at the tag of the first occur-
rence of the word.

We also used the basic DexOnline dataset (DEX), which pairs each word with
the root POS and a word frequency. We took into account only words with positive
frequency.

For the CTAG and the MSD prediction tasks we trained the systems with the
CoRoLa (CoRoLa18) dataset, as it contains full texts, thus providing linguistic and
contextual information. We used the entire dataset, with five different styles: juridi-
cal, scientific, belletristic, memorialistic and publicistic.

For the training and testing steps, all three datsets all randomly splitted, using
20% of data for testing. All three datasets are summarised in Table 2.15.

15http://nlptools.infoiasi.ro/WebPosTagger
16https://dexonline.ro/
17https://ro.wikipedia.org/
18https://corola.racai.ro/
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TABLE 2.15: Number of training and test samples per dataset

Dataset Total samples No. of training samples No. of test samples

WPT 1,715,881 897,328 224,331

DEX 1,994,412 936,611 234,152

CoRoLa 3,075,165 2,460,132 615,033

Input data encodings

For the experiments conducted in [13] we chose to use only the one hot encod-
ing(OHE) and the letter encoding(LE) styles. We did not opt for the word embed-
dings, as we were interested in predicting the POS tags based only on the ortho-
graphic form of the word, without encapsulating the context. For the Letter embed-
ding style, we used the Gensim library19 to create a letter embedding of order 30,
based on Romanian Wikipedia database.

2.3.4 Results and discussions

In [13] the performance of the systems was measured using the accuracy metric (as
ratio of correct predicted output over the total number of samples). We trained the
networks over various epochs (from 25 to 100) with different batch sizes (from 256 to
1024) and latent dimensions of the LSTM layers (from 64 to 1024). The parameters’
values for which the systems obtained the best results, as well as the corresponding
accuracy, are highlighted in Table 2.16.

Unlike the System ID 2, which looks only at the RPOS of the first occurrence in
the dataset of the word, the System ID 1 uses all the RPOS of the word and achieves
higher accuracy (increased with 4.33%). The explanation is the context has a major
contribution in the correct prediction of the RPOS: the same word can have different
POS in different contexts. With no information regarding the meaning of the word,
it becomes difficult and ambiguous to determine the appropriate POS.

The systems trained to predict the RPOS obtained better accuracy than the ones
trained for the MSD or the CTAG tasks. The cause is the number of MSD possible
tags (over 330) which the systems have to learn and predict, compared to only 13
RPOS tags. The results obtained in [13] by the System ID 6 are comparable with the
ones from [216], although the latter used context information.

Regarding the input data embedding, we observed that changing the embedding
type did not impact the learning process. One explanation may be the small size of
the input datasets, as the layer embedding may need more data in order to learn a
proper representation of it. Another remark is the letter position within the word
is not discriminating when identifying the word’s POS, thus the letter embedding
used in the System ID 3 and the System ID 4 did not increased the accuracy.

2.3.5 Conclusions and future work

For the task of POS prediction of the Romanian words, in [13] we compared two
types of architectures: the LSTM-based networks and the sequence-to-sequence ar-
chitecture based on LSTM layers. When predicting the MDS and the CTAG tagsets,
the sequence-to-sequence approach obtained better results than the simple LSTM-
based architectures. Different types of encoding the input data have been tested,

19https://radimrehurek.com/gensim/
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TABLE 2.16: Network parameters and accuracy results

System ID Dataset Tag Network type Character encoding Latent dimension Batch size Epochs Accuracy

1 WPT RPOS LSTM + Dense (*) OHE 256 512 50 99.18%
2 WPT RPOS LSTM + Dense OHE 256 512 50 94.85%
3 WPT RPOS LSTM + Dense LE 256 256 25 54.80%
4 WPT RPOS seq2seq LSTM LE 256 256 25 94.99%
5 WPT RPOS seq2seq + Embedding layer OHE 256 256 20 93.88%

6 DEX RPOS LSTM + Dense OHE 256 512 50 94%

7 WPT MSD seq2seq LSTM (*) OHE 512 1024 50 98.25%
8 WPT MSD seq2seq LSTM OHE 512 1024 50 75.28%
9 WPT MSD seq2seq + Embedding layer OHE 256 512 50 76.62%

10 CoRoLa CTAG seq2seq LSTM OHE 256 512 100 97.15%

with no major impact for the learning process. As future work, we intend to analyse
other types of neural networks (convolutional, attention mechanisms) especially for
predicting the extended MSD and the CTAG tagsets. As regarding the context in-
formation, adding linguistic features as lemma and lexical stress may improve the
systems’ performance. Moreover, we should consider using the contextual word
embeddings such as BERT.
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Chapter 3

Medical text data processing

In this subchapter we discuss methods and algorithms from machine learning applied to a
different domain: medical data.

3.1 Topic modelling for identifying medical diagnostic

First, in [2] we applied a topic modelling approach in order to help physician to find a diag-
nostic by extracting meaningful information from patients’ medical records.

3.1.1 Motivation

When it comes to evaluate patients’ health, medical doctors analyse different aspects
of the person’s life, in the so called anamnesis process. Previous diagnostics, family
antecedents of a certain illness, different symptoms declared by the patient, together
with the personal background and lifestyle contribute to establish an appropriate
diagnostic, thus to prescript an adequate medical treatment plan.

Recent advances in the machine learning field with respect to automatically pro-
cessing written text may ease the work of medical physicians. This leads to a more
accurate medical process, with fewer human errors caused by the professional fa-
tigue, the stress of working against the clock with other awaiting patients, and so on
and so forth. Machine learning algorithms are already applied in different aspects
of the medical process:

• Classification algorithms - to label the patients’ disease [224], [225], [226], [227],
[228].

• Clustering - grouping together similar medical cases in order to study patterns
of the diseases’ evolution. The information used can be both written texts or
medical images [229], [230], [231], [232].

• Topic modelling - extracting meaningful information from the written medical
observations, as clusters of words which are close in meaning, to discover hid-
den diagnostics repeatedly occurring within a certain collection of observation
[233].

• Recommendations - to automatically recommend medical treatment [234], [235],
[236].

• Anomaly detection - detecting the outliers within patients medical situation,
in order to determine if special treatments, observations or actions are needed
[237], [238], [239].
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• Predictions - make prognosis based on the available data and similar trends in
the patients’ health condition [240], detect the absenteeism in future appoint-
ments [241], predict healthcare costs [242].

• Automation - parts of the medical process (data entry, medical appointments,
inventory managements, etc.) can be automatically done using the machine
learning algorithms (a review of 100 papers in the field of automated machine
learning applied in medical care can be read in [243]).

• Ranking - to rank the medical databases, by putting the relevant content first
[244], [245]

For the experiments introduced in [2], we have focused on topic modelling, or
extracting meaningful information from the written texts, by classifying or group-
ing together the texts within a certain subject or theme, based on the contained main
idea. A set of written medical observations of 102 patients was separately grouped
as an attempt of automatic diagnostic prediction, based on the topic modelling tech-
niques from machine learning. The texts are written in English and consists in clini-
cal observation.

3.1.2 Related work

In recent years, a large number of research studies analysed the application of the
topic modelling algorithms in the field of medical data.

In [246] Bhattacharya et al. applied Latent Dirichlet Allocation to identify the
patterns of associated co-occuring conditions. They analysed over 13 000 patients
with diseases in kidney function. Instead of using the words as the basic discrete unit
for the algorithm, they used the diagnosed conditions in SNOMED codes 1. In terms
of qualitative evaluation, the authors of the study analysed the medical relevance of
the results, by verifying the medical literature if the most probable conditions within
each and every topic are indeed certified to occurs related to the tracked disease. In
term of quantitative evaluation, the results were measured using the tightness (each
topic can be expressed using a small number of conditions) and the distinctiveness
(how well the topics are separated one of each other).

In [247] the topic modelling is used to create an automated method for suggest-
ing the similarities within patients and applicable diagnostics. The authors search
for similarities between two systems: the hospital information system (diseases di-
agnosed by the medical doctor - disease corpus) and the laboratory results assigned
to a certain set of autonomous patients (the patients corpus). The study showed
that this method can bring additional insight over future diseases the patients may
develop in the future, by correlating different patients’ symptoms hidden in the pa-
tients’ clinical history.

Lin et al. propose in [248] a top-down binary hierarchical topic model (biHTM)
for biomedical literature. Their heuristic method consists in applying a LDA model
and adaptively (with few hyperparameters) processing the subtrees of the hierarchy.
The method is applied to a bibliographical dataset of biomedical information (arti-
cles from medicine, nursing, pharmacy, dentistry, veterinary medicine, and health-
care). The authors proved that the biHTM can quickly learn topic hierarchy without

1NIH U.S. National Library of Medicine https://www.nlm.nih.gov/healthit/snomedct/index.

html

https://www.nlm.nih.gov/healthit/snomedct/index.html
https://www.nlm.nih.gov/healthit/snomedct/index.html
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using latent variables. This method was compared with hierarchical LDA and Hier-
archical Latent Tree Analysis (HLTA) in terms of efficiency, topic quality and inter-
pretability and proved to be suitable to process large amount of biomedical data (25
million abstracts from 5639 selected medical publications).

3.1.3 Experimental setup and results

For the experiments run in [2] we used the medical records taken by a medical physi-
cian. The set contains 102 instances, each representing a patient with the clinical
observation, the current and past treatments and the patient’s response to the treat-
ment. Thus, as type of data, we worked with text (the clinical observation and the
prescribed treatment, both in English) and numbers (patient’s response to treatment
encrypted from 1 = non-responsive to 5 = very responsive). In order to comply with
GDPR policies, all the patients’ personal information (names, addresses) have been
suppressed by the physician before giving us access to the data.

Few pre-processing steps were required to prepare the dataset for machine learn-
ing algorithms. To generate the relevant textual features, we used word’s frequen-
cies, as defined below:

• Term Frequency (TF) counts the frequency of a word w in a document d, as a
ratio between the number of w occurrences in d divided by the total number
of words in d. We have to mention that it weights the words only based on the
number of occurrences and does not contain any semantic meaning.

• Inverse Document Frequency (IDF) measures the amount of information pro-
vided by a given word across the document. IDF is the logarithmic scaled
inverse ratio of the number of documents that contain the word and the total
number of documents.

• Term Frequency-Inverse Document Frequency (TF-IDF) normalizes the docu-
ment term matrix. It is the product of TF and IDF. A word with high TF-IDF
has many occurrences in the given documents and must be absent from the
other documents. In this case, the word must be a signature word.

To model the topics present in the analysed texts, we used the Latent Dirich-
let Allocation (LDA) and the Latent Semantic Indexing. The LDA algorithm is a
Bayesian hierarchical probabilistic generative model which assumes that each docu-
ment is a discrete distribution over multiple topics and each topic separately is seen
as a discrete distribution over words, seen as tokens. In order to assign the topics
to each documents, LDA first assumes a number of k topics within the researched
documents, topics which are distributed across each document, by assigning a topic
to each word. Then for each word w within a certain document we supposed the
chosen topic is wrong, but the topics selected for the all other words are correctly
selected. The new topic is assigned to the word w in a probabilistic way, based on
two criteria: the existing subjects within the considered document and the number
of times the analysed word is associated with a certain topic across all the documents
in the dataset. We repeated this process for a number a times for each word, until
we reached a stable state in which the topics allocation does not change any further.
The distribution of the topics within the documents is determined from the topic
allocations.

For the present topic modelling system[2] the first step was to classify the texts
using the TF-IDF. The obtained model was fit using 80% of the data, while the pre-
dictions were made for the rest of 20% of the dataset. In order to apply the LDA for
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FIGURE 3.1: Values of topic coherence score for different number of
topics [2]

topic modelling, we needed an input corpus and a dictionary. We used the Natural
Language Toolkit (NLTK)2 from Python, as it contains most of the algorithms and
the functions needed to process the unstructured text: sentence and word tokeniza-
tion, removing stop words, stemming, lemmatization, POS tagging. With the help
of NLTK library we matched each word with an unique ID. Then, we mapped each
word ID with the word’s frequency to obtain the desired corpus.

As LDA is an unsupervised method, we did not know apriori the number of
topics to pass to the algorithm. Thus, we analysed different number of topics as
input and we compared the results using the topic coherence score. The values of
the topic coherence score for different numbers of topics are illustrated in Figure
3.1. We can observe that for a number of topics bigger than 3, the curve of topic
coherence measure begins to decrease. Thus, 3 topics offer us significant insight of
data. In Table 3.1 we extracted the most relevant words for each of the 3 chosen
topics.

Topic No. The most relevant words from each topic

Topic 1 0.2 * ulcer + 0.2 * abdominal pain + 0.1 * migraine + 0.1 * fatigue + 0.1 * vomiting
Topic 2 0.2 * jaundice + 0.2 * fatigue + 0.1 * wight loss + 0.1 *itching + 0.1 * nausea
Topic 3 0.2 * headache + 0.2 * fever + 0.1 * nausea + 0.1 * photophobia + 0.1 * sleepiness

TABLE 3.1: Words relevant from each topic

3.1.4 Conclusions and future work

In the experiments described in [2] we applied machine learning techniques in the
field of topic modelling to help the medical physicians in the diagnostic process.
Thus, using the Latent Dirichlet Allocation models combined with the text process-
ing tools we clustered 102 medical records into three topics, based on the most rele-
vant words within the documents. This approach is intended to assist the physicians
in the process of analysing the patients’ medical condition in order to decide the dis-
ease and the treatment which fits best.

As future work, we intend to extend this approach to medical records written
in the Romanian language, as well as to a bigger database. Furthermore, we intend

2https://www.nltk.org/
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to analyse different approaches for the topic modelling field, in order to overcome
the limitations of the LDA algorithm, such as: questionable efficiency for short texts
[249] or disregarding co-occurrence relation over the studied documents [250]. We
intend to combine the LDA algorithm with the deep learning techniques, in an hy-
brid approach, as already applied in [251]

3.2 Personal communication styles analysis

Secondly, in [14] we compared six machine learning algorithms to classify one person’s com-
munication style based on psychology questionnaires.

3.2.1 Motivation and related work

In the era of Big Data when written and recorded audio data are available almost
everywhere (from the social networks to the official registered databases) it becomes
imperative to address the issue of automatically gaining insights from the collected
data either by:

• interpreting the questionnaires responses (to determine different traits, com-
munication styles, psychological personality, future trends in shopping or mar-
keting, etc.),

• predicting or forecasting future events (diagnostics, illness’s evolution or re-
mission, stress levels related to contextual situations, suicidal intention, vul-
nerable categories of people in certain contexts, etc.)

Researchers identified this need and analyzed different approaches and method-
ologies both to facilitate the use of the collected data and to extract meaningful in-
formation among the big amount of data. The ability of handling significant amount
of data transform machine learning algorithms into a good candidate for the above
mentioned applications.

In [252] Dinga et al. apply the penalized logistic regression over a set of over
800 patients to predict the depression course. The study intends to find the best
set of predictors out of clinical, psychological, or biological variables, based on the
inventory of depressive symptomatology. The dataset is balanced in terms of the
patients already being diagnosed or not with depression in the last two years. 81
features are analysed as the patients were monitored over two years. Subjects were
grouped according to the illness’ presence and to its trajectory: chronic, remission or
gradual improvement. The results presented in [252] state an accuracy of 62% when
predicting the illness’ remission and an accuracy of 69% when it comes to predict
the presence of a major depressive disorder.

Study [253] review the scientific literature for the applications of the person-
ality data. They started from detecting the personality type from the psychology
point of view (predict individuals’ Big Five personality traits, using a wide range of
written data, including informal social networks texts and reactions, musical prefer-
ences, spending records, language samples) and reached the unsupervised machine
learning techniques to analyse other psychological aspects within the digital data.
Secondly, the study directs its attention to the works which apply methodological
questions in order to measure different social and demographic aspects such as pre-
dicting life outcomes, measuring tasks performances or even to self-reporting data.
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Thirdly, it is investigated the use of machine learning algorithms applied on per-
sonality data to create recommender systems used in the marketing and retailing
areas. Last but not least, the review paper analysed the principal issues(overfitting,
underfitting, unbalanced data, etc.) that may occur during the use of the machine
learning algorithms within the mentioned areas together with the possible solutions.
A set of common measures used to interpret the results is also described. The review
contains more than 130 research papers published between 2005-2020.

Research paper [254] compose a comprehensive review of the principals machine
learning methods applied to predict suicidal intentions among different categories
of people. The authors present the different types of questionnaires designed to de-
tect as early as possible the intention of suicide among the vulnerable categories of
people. Furthermore, valuable information can be extracted by automatically pro-
cessing the content published by the monitored subjects on different social networks
by applying Natural Language Processing techniques (N-gram features, knowledge-
based features, syntactic features, context features, term frequency-inverse docu-
ment frequency matrices for messages,word embeddings, topic modelling, etc.). An
increased attention must be paid to the affective characteristics, as they can easily
discriminate between those with suicidal thoughts and healthy subjects. Deep learn-
ing methods (Multilayer perceptron, CNN, RNNs, LSTMs and attention based neu-
ral networks) are analysed across more than 100 research papers published between
2010-2020 dealing the suicidal ideation.

3.2.2 Experimental setup and results

In [14] we analysed six machine learning algorithms for the task of classification.
More precisely, we used the data obtained from answering of a questionnaire for
determining the communication style and try to link one person’s stress level with
the style of communication.

Our dataset contains 220 instances with more than 60 variables. As type of data,
we worked with a discrete attribute of the nominal type (gender of the person), a
numerical attribute (age), a discrete ordinal type (the level of stress) and 60 binary
attributes (true or false). We chosen the questionnaire proposed by Marcus et al.
in [255] which classifies a person’s communication style into one out of the four
communication styles: non-assertive, manipulator, aggressive and assertive by an-
swering a set of 60 questions. Additionally, for the experiments described in [14]
each person was asked to measure its stress level as low, medium or high, as the
purpose of our study was to analyse the correlation between the stress level and the
communication style.

We passed the data to six classification algorithms: Decision Tree Based Model,
Support Vector Machine, Random Forest, Classification based on instances (k-NN),
Naive Bayes and Logistic Regression. We evaluated the learning processing by ap-
plying the cross-validation technique. We consequently divided the dataset into k
subsets and repeatedly trained the systems using k − 1 subsets for learning and the
last k subset for validating. For each learning iteration, one different subsets was left
outside for validation only.

We evaluated these algorithms in terms of accuracy, precision, sensitivity, and
specificity. In terms of classifier metrics, the results obtained by our six learners fall
within the limits accepted in the literature. If we analyse the results obtained by the
accuracy metric, we can conclude that the Random Forest classifier best performs,
obtaining an accuracy of 97%, while the Naive Bayes obtained the poorest results,
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only 85%. The results of the other three classification metrics are synthesized in
Table 3.2.

Metrics Classifier Models Naive Bayes k-NN Logistic Regression Decision Tree SVM Random Forest

Accuracy 0.85 0.88 0.88 0.93 0.95 0.97
Precision 0.81. 0.79 0.81 0.78 0.82 0.81
Sensitivity 0.75 0.73 0.77 0.78 0.74 0.77
Specificity 0.68 0.72 0.62 0.63 0.62 0.63

TABLE 3.2: Communication styles: Results obtained by each of the
six classifiers

Data dispersion for each classifier is illustrated in Figure 3.2. We can observe
that the characteristics of each algorithm influence the data dispersion delimitations.
Consequently, the limits are clearly illustrated for the Random Forest (Figure 3.2a)
and the Decision Trees (Figure 3.2c), while Logistic Regression (Figure 3.2d) and k-
NN (Figure 3.2e) do not provide clear boundaries.

(A) Random Forest
(B) SVM

(C) Decision Tree

(D) Logistic Regression
(E) k-NN

(F) Naive Bayes

FIGURE 3.2: Communication styles: Data dispersion after applying
the classification models [14]

3.2.3 Conclusions and future work

In the experiments described in [14] we analysed the correlation between the stress
level and the communication style over a group of 220 persons, by combining the
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machine learning with the cognitive psychology. We applied six learning classifica-
tion algorithms (Decision Tree Based Model, Support Vector Machine, Random For-
est, Classification based on instances (k-NN), Naive Bayes and Logistic Regression)
on a handcrafted dataset, created from the responses received at the communication
styles questionnaire described in [255]. Once we will chose the best learner accord-
ing to the studied context, we will apply the system to new unclassified instances,
unseen during the learning process.

As future work, we intend to increase the size of the dataset in order to eliminate
the biases in data. Furthermore, we will focus on analysing newer classification
techniques with a better performance in terms of accuracy metrics.
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Part II

Solutions for Romanian Speech
Synthesis problems



47

Chapter 4

Theoretical insights into
Text-to-Speech (TTS) systems

In this chapter we present the background knowledge and the state-of-the-art in the field of
Text-to-Speech systems, using Machine Learning methods. We focus on Expressive TTS
and Speech Synthesis for low resourced languages. The information collected in this chapter
facilitates the research published in [9], [10].

4.1 TTS beginnings

Text-to-speech (TTS), also known as Speech Synthesis, represents a topic of interest
for research due to the wide variety of applications in the industry. As TTS aims
to create intelligible and natural speech by synthesising a given text, it requires
knowledge from various disciplines: linguistics, acoustic, signal processing, ma-
chine learning. The first attempts of building artificial speech consists on mechanical
TTS systems. In the 12th century, names as Albertus Magnus (1198–1280) and Roger
Bacon (1214–1294) were linked to the legendaries "braven heads", an automaton
meant to predict the future by answering to "yes or no" questions. Six centuries later,
a Hungarian scientist Wolfgang von Kempelen (1734-1804) used bagpipes, springs
and resonance boxes in order to produce simple words or short sentences [256]. In
the 1930s the Nokia Bell Labs developed the vocoder [257], a device meant to easier
transmit telephone conversations over long distances by reducing the bandwidth.
The idea was to split the input signal (the human speech) into multiple bands and
to keep only those necessary to recompose intelligible speech. Once the comput-
ers developed, the TTS technology includes articulatory synthesis, formant speech,
concatenative speech, statistical parametric speech synthesis and neural speech syn-
thesis. The following paragraphs will shortly describe the main types of TTS systems
mentioned above [105].

4.2 TTS classification

4.2.1 Articulatory Synthesis

[258], [259] simulates the human articulator (lips, tongue, glottis or moving vocal
tract) to produce the synthesised speech. Intuitively, this is the best TTS systems
in terms of effectiveness, as it mimics the way the human body works. However, in
practice, modelling these articulator behavior is difficult and challenging, as data for
articulator simulator is hard to collect. The quality of speech obtained through artic-
ulatory synthesis is worse than the one obtained through formant or concatenative
synthesis.
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4.2.2 Formant Synthesis

[260], [261], [262] uses a set of rules - composed by the linguists, in order to best sim-
ulate the formant structure and spectral properties of the text - to build a source-filter
model. An acoustic model and a synthesize module are used to produce the speech.
The advantages of Formant Synthesis consist on highly intelligible output speech,
moderate computational resources and the independence upon a pre-recorded hu-
man speech corpus, unlike the concatenative speech synthesis. The main disad-
vantages are the lack of naturalness and the artifacts present in the output speech.
Moreover, the set rules are difficult to formulate.

4.2.3 Concatenative Speech

[263], [264], [265], [266], [267] consists on concatenating different pre-recorded sound
pieces of the desired text in order to obtain the required output. The pre-existent
database, usually recorded by a professional actor/speaker, contains samples of dif-
ferent sounds (vowels and consonants), syllables or even whole sentences. During
the inference phase, the systems searches for units which best matching the input
texts and concatenates them in order to obtain the desired output. The main benefit
lays in the high intelligible synthesised speech, which retain the properties (timbre,
accent, etc.) as close to the original recorded voice as possible. However, to cover
all the possible combinations of sounds requires large amount of recorded database,
difficult to obtain, especially for scarcely spoken languages - in contrast to English,
Chinese or Hindi languages. Another disadvantage lays in the characteristics of the
synthesised speech: the output voice is less natural and scarcely emotional, as it con-
sist in concatenated speech units, which can lead to a noticeable transition from one
sound to another.

4.2.4 Statistical Parametric Speech Synthesis - SPSS

meant to overcome the disadvantages of concatenative speech synthesis [268], [269],
[270], [271], [272]. Instead of generating the waveform from existing recording speech
units, SPSS predicts acoustics parameters and reconstruct the desired output using
different algorithms [273], [274], [275]. A SPSS is composed by three components
[105]:

• text processing module - implies text normalization, text segmentation at dif-
ferent granularity (phrase, word) or grapheme to phoneme conversion in order
to extract linguistic features (phonemes, POS tags, etc) from the given input
text.

• acoustic model - is trained with pairs of linguistic features and the correspond-
ing acoustic characteristics (including fundamental frequency, spectrum, etc)
to learn the behaviour of as many possible combinations of sounds as possi-
ble.

• vocoder - is used in both analysis and synthesis. First, the vocoder extracts
(from the input audio files) the audio features needed to train the acoustic
model. Second, during the synthesis, the vocoder uses the audio features pre-
dicted by the acoustic model and synthesizes the desired speech.
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FIGURE 4.1: The 3 components of a TTS system

Among the advantages of the SPSS systems we can mention the following: the
naturalness of the output voice, the low recorded databases compared with the con-
catenative synthesis systems and the adjustability, as the acoustic or the linguistics
parameters can be modified in order to obtain the desired output. However, the
SPSS systems have their lacunae. For instance, the synthesised sound is still metallic
and sometimes hard to understand (in term of intelligibility) because of the artifacts
like noises or buzziness.

With the appearance and the development of neural networks, as an attempt to
overcome the SPSS drawbacks, ANN have been successfully included within the
SPSS synthesis. Recent studies proved that replacing the HMM model with the
Recurrent Neural Networks [276], [277], [278] or the Deep Neural Networks [278],
[279], [280] within the SPSS systems lead to a better quality of the synthesised speech.
Furthermore, studies as [281] proposed extracting the acoustic features directly from
the phonetic content, not involving the linguistic features, as a first step in develop-
ing the end-to-end speech synthesis systems.

4.2.5 Neural Speech synthesis

[105] The next intuitive step was to develop the TTS systems based on neural net-
works to First WaveNet [282] and DeepVoice 1/2 [283], [284] replaced the main three
components illustrated in Figure 4.1 with their correspondents based on the neural
networks. With the rise of the end-to-end systems, the first attempts as Tacotron
1/2 [3], [4], [285], DeepVoice3 [286] or FastSpeech [287] came to simplify both the
text analysis module (by directly processing the phonemes or characters sequences
of the input text) and the acoustic module (by processing the waveform of the input
wav file). ClariNet [288], FastSpeech2 [289] and EATS [290] came as a fully end-to-
end alternative to predict the waveform directly from the input text.

A more comprehensive list of TTS systems is illustrated in Figure 4.2.

4.3 TTS systems for low resourced languages

As already described in the previous classification, the quality of a synthesised voice
is highly dependent on the quantity of data used for training. Consequently, only
widely spoken languages among which English, French, German, Russian, Hindi or
Mandarin benefit of support for a wide range of applications from business to social
good. In order to overcome the low resourced languages low coverage many re-
search studies developed strategies to build TTS systems, among which we mention
[105]:

4.3.1 Cross-lingual transfer

suppose pre-training the TTS system with the available amount from a rich resourced
language and then, fine tune the output voice to the characteristics of the desired low
resourced language [324], [325], [326]. However, may occur differences between the
phonemes or the linguistics rules form one language to another. In [326] the authors
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TTS

Text Analysis Char Linguistic TN [291], [292], [293] G2P
[294], [295], [296] Prosody

Prediciton [297], [298], [299]
Unified Model [300], [301]
DeepVoice 1/2 [283], [284]

Acoustic Model

Linguistic Acoustic HMM-based [268], [269],
[271], [272] RNN-based
[276] DNN-based [279],

[280] Emphasis [302]

Char/Phone Acous-
tic Linguistic

ARST [281] DeepVoice3
[286] Tacotron 1/2[3], [4]

FastSpeech 1/2 [287], [289]
DurIAN [303] DCTTS
[304] TransformerTTS

[5] VoiceLoop [305]
ParaNet [306] GlowTTS

[307] Grad-TTS [308]

Vocoder

Vocoder in SPSS STRAIGHT [275]
WORLD [309]

Linguistic Wav WaveNet [282] Par.WavNet
[310] WaveRNN

[311] GanTTS [312]

Acoustic wav WaveGlow [313]
FloWaveNet [314] Mel-
Gan [315] LPCNet [316]

WaveGrad [317] HiFi-GAN
[318] Parallel WaveGan [319]

Fully End-to-end Model Char/Phone - Wav Char2Wav [320] FastSpeech
2 [321] ClariNet [288] EATS

[290] VITS [322] WaveTa-
cotron [323] EfficientTTS

<empty citation>Miao2021EfficientTTSAE

FIGURE 4.2: A TTS classification with examples [105]

propose a mapping between the linguistic symbols of the input and the target lan-
guages. LRSpeech [325] propose a Tranformer-based architecture to build TTS and
voice recognition systems for scarcely represented languages, such as Lithuanian.

4.3.2 Cross-speaker transfer

When little data from a single speaker is available, the synthesised voice can be
improved by transferring the knowledge from a better represented speaker. Tech-
niques like voice conversion [327], [328], [329], speaker adaptation [330], [331] or
voice cloning [332] may leverage the quality of the target speaker synthesised voice.

4.3.3 Self-supervised Learning

The TTS systems learn form the available input data, most commonly structured as
pairs of the audio files and the corresponding written/linguistic information. For
low resourced languages such labelled data is difficult to obtain. Inspired by the
human’s way of learning through everyday experiences, a self-supervised learning
approach seem to improve the TTS Systems’ language understanding and speech
generation. Studies as [333], [334] come to enrich the TTS text encoder using pre-
trained BERT models [211] while the speech decoder can be trained together with a
voice conversion task [335].

Figure 4.3 summarizes the above described approaches for TTS low-resourced
languages.



51

Low-resoured TTS

Cross-lingual transfer [324], [325], [326]

Cross-speaker transfer Voice Conversion [327],
[328], [329] Speaker

Adaptation [330], [331]
Voice Cloning [332]

Self-supervised Learning [333], [334], [335]

FIGURE 4.3: Low-resourced TTS approaches [105]

4.4 Expressive TTS

Beside the intelligibility and the naturalness, the expressivity of the synthesised
speech is another characteristic which gained interest in the recent studies in the
TTS field. The same text can have different interpretations in terms of sarcasm or
emotions. Usually, the synthesised voice has a linear timbre and fails to convey the
author’s feelings. The expressivity of the generated voice can be influenced by the
timbre, the prosody or the speech style. In order to increase the synthesised voice’s
expressivity, researchers enriched the input dataset with information regarding the
speaker’s style, timbre, accent, etc or with specifications about the text or about the
speech prosody (rhythm, intonation, style, etc). Other approaches follow an un-
labeled training by extracting as much information as possible from the variation
of the input data which is then disentangled during training to obtain a more ex-
pressive voice. Figure 4.4 gathers the main approaches together with the significant
studies.

Expressive TTS

Modelling the varia-
tion of information

Information annotation

labelled
Speaker/style/language ID [336], [337] GST Tacotron [4]

Duration or Pitch [287], [289],
[338], [339], [340]

unlabelled

Reference Encoder [341], [342], [343],
[344], [345], [346], [347]

VAE [348], [349], [350],
[351], [352], [353], [354]

GAN/FLOW [346], [355],
[356], [357], [358]

Text-pretraining [334], [344], [359], [360]

Information granularity

Language Level Multilingual TTS or
Multispeaker TTS

[337], [361], [362]

Paragraph Level Long-form reading [325], [363], [364]

Sentence/Utterance Level Timbre Prosody or Noise [4], [285], [365], [366], [367]

Word/Syllable Level Fine-grained Information [368], [369], [370], [371]

Character/Phone Level Fine-grained Information [367], [368], [370],
[372], [373], [374]

Disentangling Varia-
tional information

Adversarial Framework [351], [375]

ASR module [376]

Feedback Loss [377], [378]

FIGURE 4.4: Expressive TTS approaches [105]

The written text is also analysed at different granularities in order to extract rele-
vant information in terms of expressivity. For instance, at language level [337], [361],
[362] we can use a language ID during the training of the multilingual TTS systems
to differentiate between them. At paragraph level [325], [363], [364], the systems
try to learn the links between the sentences and the words over the entire text in a
long-term reading approach. At utterance level [4], [285], [365], [366], [367], an em-
bedded vector is learnt form every sentence in order to retain information about the
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timbre, the prosody or the style. The finest grained levels (word level and syllable
level [368], [369], [370], [371] or even phoneme or character level [367], [368], [370],
[372], [373], [374]) come to complete the learning by extracting specialized informa-
tion (duration, pitch or prosody) hardly observed at a rougher level.

Beside modelling the variation information, recent studies focus on disentan-
gling, controlling or transferring the information to improve the TTS expressivity.
The datasets with mixed multiple styles, speakers or prosody information may cum-
ber an accurate learning. Thus disentangling the variation information leverage the
control and the transfer of the knowledge of interest. For instance, the adversarial
framework is applied to disentangle either speaker information from noisy sounds
[346] or one speaking style from another [351], [375]. In some cases, the TTS sys-
tems may disregard the style information embedded in the input data and provide a
speech without the desired expressivity. Thus studies [377], [378] tries to enforce the
TTS learning using a loss feedback to ensure a desired style or emotion achievement.
Other approaches [376] use an automatic speech recognition module (ASR) to adjust
the correlations between the training and the inference data.

4.5 Evaluation methods

As the synthesised speech is meant to be used by people within different applica-
tions, there is a need to evaluate the quality of the TTS systems. Common trend
combine the subjective evaluation methods (listening tests) with the objective eval-
uation techniques. In the following paragraph we will sketch this two approaches
together with the main advantages and disadvantages.

4.5.1 Subjective evaluation - Listening tests

The subjective evaluation of the synthesised speech consists in applying a listening
test (a questionnaire about listeners’ preferences for an apriori chosen set of audio
samples) to a specially selected group of people. The listening tests can be coarsely
classified into relatively preference based tasks and into ranking assigning tasks.

ABX preference

The first category contains pairs of reference - test audio files (stimuli) and the listen-
ers have to express their preference for one of them. In a multi-system comparison
TTS scenario, the stimuli pairs can be obtained by randomly combining two of the
analysed systems, as in [9].

Mean Opinion Score (MOS)

The ranking assigning listening tests involve evaluating a set of stimuli (no reference
stimuli is needed) on a certain scale, in terms of naturalness, expressivity and intel-
ligibility, as applied in [10]. Usually the chosen scale range from 1 - "Unsatisfactory"
to 5 - "Excellent", as recommended in [379] by the IEEE Subcommittee on Subjective
Methods and in [380] by ITU. Then the MOS (Mean opinion score) is computed as
the arithmetic mean over single ratings performed by human subjects for a given
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stimulus in a subjective quality evaluation test 4.1:

MOS =

N
∑

n=1
Rn

N
(4.1)

where R are the individual ratings for a given stimulus by N listeners.

MuSHRA setup

The MUltiple Stimuli with Hidden Reference and Anchor (MuSHRA)1 listening test
setup compare the audio quality of several test conditions with the intermediate
impairments to a high quality reference. Using a 1 to 100 scale, the listeners rate the
TTS systems to be tested relatively to a reference stimuli. Although very similar with
the MOS methodology, the MUSHRA tests present all the test conditions at the same
time for each and every reference sample, as illustrated in Figure 4.5. In the research
paper [10] we evaluated our TTS systems using the MUSHRA listening test.

FIGURE 4.5: Caption from a MUSHRA test in AudioLab implemen-
tation

4.5.1.1 Advantages

The main advantage of the listening tests is the directly link with the human percep-
tion of the audio samples. While the objective evaluation methods avoid the subjec-
tivity by scientifically computing and evaluating different distortion measures, they
may not accurately reflect the way the human will perceive the synthesised samples.
Thus better scored audio samples may sound poorer to the public and viceversa.

4.5.1.2 Disadvantages

As listening tests suppose evaluating audio samples based on the perception of the
assessors, selecting professional listeners is an expensive process in terms of time
and human resource. Moreover, the items of the questionnaire require a high level

1ITU-R Recommendation BS.1534-1
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of attention and concentration as a listening test usually lasts 20 minutes. Thus col-
lecting all the results is time consuming, unlike the objective evaluation methods.
Moreover, biases may occur (some listeners may misrate different tasks of the test)
which have to be dropped of from the final evaluation.

4.5.2 Objective evaluation - Distortion measures

The objective evaluation methods consists in ranking the TTS system’s output natu-
ralness based on different scores. The main flow of an objective evaluation consists
in segmenting the audio signal in speech frames (of 10-30 milliseconds) followed by
the analysis of a distortion measure computed between a target and a reference au-
dio. To be noted that the distortion measure do not act completely like a distance, as
some measures are not symmetric (in [381] authors suggest that symmetry should
not pay an important role in distortion measures) or have negative values (log spec-
tral distance measure). Different studies [382], [383], [384] survey the existent objec-
tive measures, however we will focus only on those used in our experiments.

Mel Cepstral Distortion (MCD)

In [9] we used Mel Cepstral Distortion (MCD) measure as an objective evaluation.
In speech processing tasks we commonly analyze the waveform split into the multi-
dimensional coefficients, seen as vectors, at uniform spaced intervals, called frames.
The MCD is defined over such two cepstral coefficient vectors as:

MCD(ctgt, cre f ) =
1
T

T−1

∑
t=0

√√√√ D

∑
d=1

(ctgt
d (t)− cre f

d (t))2 (4.2)

where ctgt and cre f are the target and the reference cepstral vectors, respectively,
T is the total number of frames, and D is the cepstral dimension, t is time or frame
index.

The smaller the MCD between the synthesized and the natural mel cepstral se-
quences, the closer the synthetic speech is to reproducing the natural speech.

Mel Spectrogram Distortion (MSD)

However, in end-to-end systems, the cepstrum is not used to parametrise the wave-
form. The Mel spectrogram is used instead. The Mel Spectrogram Distortion (MSD)
is similarly defined over two Mel spectrogram coefficients vectors as:

MSD(st, sr) =
10
√

2
ln10

1
T

T=1

∑
t=0

√√√√ D

∑
d=1

(st
d(t)− sr

d(t))
2 (4.3)

where st and sr are the target and the reference Mel spectrogram vectors, re-
spectively; T is the total number of frames, and D is the number of Mel bins. The
0th coefficient (the energy) is discarded. To align the synthesised and the natural
sequences, a Dynamic Time Warping (DTW) algorithm was used. The smaller the
MSD between synthesized and the natural mel spectogram sequences, the closer the
synthetic speech is to reproducing the natural speech.

The experiments described in [10] are evaluated based on MSD score.
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4.5.2.1 Advantages

By far the main advantage of the objective evaluation methods is the short time
needed to obtain a measurable result. Thus the entire process of selecting the listen-
ers and creating a listening test setup is replaced with computations based on a well
known formula, already implemented in many programming languages2.

4.5.2.2 Disadvantages

One disadvantage of this evaluation approach is that we always need the natural-
voice sample corresponding to the evaluated synthesised utterance in order to ac-
curate compute the distortion. Furthermore, the objective evaluation is not always
related with the human perception on the audio sample. Thus, only the objective
evaluation by itself may fail to accurately evaluate an output correlated with the
synthetic voice’s application purpose. In these cases, the objective results are inter-
preted in correlation with the ones obtained after the listening tests.

2MCD score Python implementation - https://github.com/MattShannon/mcd
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Chapter 5

Enhancing the Romanian TTS
Systems

In this chapter we apply machine learning in the field of speech synthesis. All the experiments
and the corresponding results were elaborated in the original research papers [9], [10]. The
following chapter is based on these publications.

5.1 Can synthesised speech data improve the speech expres-
sivity?

In this subchapter we analysed if adding synthesised speech data to train the deep learn-
ing Text-to-Speech systems can improve the expressivity of the resulted synthesised voice.
Detailed experiments have been published in [10].

5.1.1 Motivation

In latest research, the naturalness of text-to-speech systems has grown due to the use
of the deep learning models. However, the expressivity of the synthesized voices
(which is dependent on the existence of expressive corpora) remains a field of in-
terest, especially for the low resourced languages. For the largely spread languages
such as English or Mandarin extended corpora with expressive speech are frequently
released, while for the other languages obtaining such a corpus is a challenge, as this
is not part of the research community’s interest.

In the absence of a large corpus enriched with expressivity, the researchers choose
different methods to improve the TTS expressivity. Regardless the TTS paradigm
chosen, to improve the naturalness of the synthesised voice the common approach
is training a voice using data from multiple speakers and fine-tuning the obtained
parameters toward a specific speaker, called target speaker. In this case, fewer data
for the data speaker is necessarily, as the systems was able to learn an internal rep-
resentation of the speech characteristics.

When we intend to improve the expressivity, the methods are chosen with re-
spect to the TTS’s paradigm. For the statistical parametric TTS, we need to adapt
the duration and the fundamental frequency (F0) models, as illustrated in [385]. The
recent end-to-end systems, based on the sequence-to-sequence learning, do not con-
tain a specific representation of the prosody, as the systems learn it using different
latent or observed attributes. In [3] the Tacotron architecture is upgraded with an
embedding layer responsible with learning the prosody contained in an audio ref-
erence. These learned prosodic features are passed to the network during the syn-
thesis step. Studies of [4] and [285] introduce a new module (called Global Style
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Token layer) to specifically learn different prosody characteristics present in the in-
put data. Variational Autoencoders are applied in order to learn different emotions
from speech, in an unsupervised manner [386] or to explain the characteristics not
present in the input data: accent, recording conditions [387].

However, all the results mentioned above use manual adjustments or audio ref-
erence in the inference step. In [388] the features of the target speaker’s style are
learned through a hidden layer augmentation strategy, by adding new neurons to
learn the desired style characteristics.

Romanian is part of the languages with limited data in the field of expressivity,
both for voices or datasets. RSS [389] is a starter dataset containing for hours of
high quality speech of a single speaker. SWARA [390] extends the RSS with new 16
speakers, leading to the one of the largest Romanian speech corpus with parallel data
(includes 21 hours of speech). To the best of our knowledge, there are no other freely
available Romanian datasets suitable for Speech synthesis. However, both RSS and
SWARA contain only monotone speech, as the recorded texts have been chosen from
the Romanian local newspapers. Having in mind all the previous mentioned studies,
in our original research paper [10] we introduced a new expressive Romanian speech
corpus MARA. We also analysed to what extend the synthesised speech data can
improve the expressivity or the prosody transfer within a TTS system.

5.1.2 MARA dataset

MARA corpus started from an audiobook, read by a professional female actor, which
was kindly granted to us by "Cartea Sonoră" 1. It presents the story of a Romanian fe-
male called Mara, describing the struggles and the way people lived in Transylvania
in the 19th century, during the Austrian-Hungarian occupation. The book entitled
"Mara" was written by Ioan Slavici and published in 1906.

As the audiobook only contains the recorded audio files, one for each chapter,
further processing steps were required, both at audio and at text levels.

At first, we manually segmented the audio files into smaller files, following the
speaker’s phrase break pauses. This step is needed due to the fact that the sequence-
to-sequence architectures have great difficulties in learning from long utterances.
Thus we obtained 8150 audio files with an average length of 5 seconds, correspond-
ing to approximately 12 words. The entire dataset contains 11 hours of speech, sam-
pled at 44kHz and 16bps.

As no text was provided, the next natural step was to manually divide the novel’s
written content into chunks following the corresponding audio files. The obtained
text was annotated through the RACAI Relate Platform2, resulting 8150 text files in
CONLLU format3 with high-level linguistic information such as text normalisation,
phonetic transcription, syllabification, lexical stress assignment, lemma extraction,
part-of-speech tagging, chunking and dependency parsing. To prepare the text for
the TTS system input, a HMM based aligner was train to provide the phone-level
boundaries.Then each phoneme is associated with the linguistic metadata using the
HTS label format files 4.

All these processing steps are described in our original research paper [10]. As
this work was part of the SINTERO research project 5 we have to mention that I, in

1https://www.youtube.com/c/CarteaSonoraCartiAudio/featured
2https://relate.racai.ro
3https://universaldependencies.org/format.html
4https://wiki.inf.ed.ac.uk/twiki/pub/CSTR/F0parametrisation/hts_lab_format.pdf
5https://speech.utcluj.ro/sintero/

https://speech.utcluj.ro/sintero/
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particular, was responsible for processing half of the dataset.
The segmented corpus along with the annotations is available on http://speech.

utcluj.ro/marasc/ and utilizes a CC-by-NC-ND 4.0 licence.6

5.1.3 Experimental setup

Datasets

Due to the fact that the dataset contains audio files with different levels of expres-
sivity, we divided the data in two parts:

• MARA-Flat - contains the audio files with a narrator’s like intonation, trans-
lated as a F0 mean value within 100kHz of the corpus value and a F0 standard
deviation smaller than 50kHz.

• MARA-Expr - contains the rest of the dataset, mostly with dialogue parts or
characters voices played by the reading actor.

In figure 5.1 one can observe that the MARA-Expr subset has a much wider do-
main for the F0 values. The dataset splitting is balanced, as each obtained dataset
contains around 5 hours of data.

] MARA-Flat MARA-Expr

100

200

300

400

500

F0
 [H

z]

FIGURE 5.1: MARA Corpus: Letter-value plots of the F0 values in the
MARA-Flat and MARA-Expr subsets [10]

Obtaining synthesised expressive data

The following experiments were published in our original research [10], aiming to
analyse the impact of the synthesized speech data to the overall TTS expressivity.
We trained the TTS systems using only the narrative subset MARA-Flat. From the
MARA-Expr audio samples, we extracted the phones duration and the F0 contour
which, combined with the spectral parameters generated by the TTS systems for the
same utterances, generated the synthetic waveform. The obtained synthesised data

6https://creativecommons.org/licenses/by-nc-nd/4.0/

http://speech.utcluj.ro/marasc/
http://speech.utcluj.ro/marasc/
https://creativecommons.org/licenses/by-nc-nd/4.0/
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was used as an attempt to enrich the prosody when no expressivity is present in
data. Two different TTS architectures were analysed: Hidden Markov Model sys-
tems and Deep Neural Networks. For the HMM based systems we selected the HTS
implementation [391], while the deep learning based TTS systems were trained with
the Merlin toolkit [47].

To overcome the artefacts of the HTS synthesised data, we applied a postfilter-
ing procedure. Consequently, the output of the HTS system trained with the entire
MARA-Flat dataset was paired with the corresponding natural audio files in a voice-
conversion manner. This voice-conversion architecture is meant to direct the original
input towards the target voice, thus correcting the HTS systems’ artefacts. Figure 5.2
illustrates the overview of the above described processes.

FIGURE 5.2: MARA Corpus: Block diagram of the end-to-end sys-
tems’ training process using synthesised expressive speech data [10]

The end-to-end synthesis systems

The data obtained within the previous paragraph is fed to an end-to-end speech
synthesis system. For the deep learning based architectures used in the experiments
form [10], we chose the Mozilla open source implementation7 of the Tacotron system
[3].

To assure a clean start data (with no artefact obtained during synthesis), we
firstly train Tacotron for 500 epochs using only the MARA-FLAT dataset. The ob-
tained parameters and weights were applied to initialize all the other systems used
during the [10] experiments. To get the baseline systems(ID: TAC:FLAT), we trained
this system for another 500 more epochs. The topline is considered to be the systems
trained with all data from the MARA corpus, both narrative (flat) and expressive (ID:
TAC:ALL). The systems analysed during our expressivity experiments were trained
as follow: the pretrained 500 epochs Tacotron Flat system was trained for another

7https://github.com/mozilla/TTS
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TABLE 5.1: MARA Corpus: End-to-end synthesis systems’ descrip-
tion

No. System id Expressive data
1 Tac:FLAT None
2 Tac:ALL Natural data
3 Tac:Merlin Merlin synthesised data
4 Tac:HTS HTS synthesised data
5 Tac:HTS-PF HTS with post-filter synthesised data

500 more epochs using Merlin, HTS and HTS-postfiltered respectively synthesised
data as input. Table 5.1 comprises the systems used.

5.1.4 Evaluation and results

The results obtained from our experiments on the expressivity task are described in
[10]. We used both subjective and objective evaluation methods.

Subjective measure - Listening tests

In [10] we conducted a listening test based on the MUlti Stimulus test with Hid-
den Reference and Anchor (MuSHRA) methodology 8. The test included two sec-
tions: the naturalness and the expressivity. In the naturalness section, the natural
sample was presented to the listeners as reference. In the expressivity section, we
did not want to influence the judgement of the listener, so that the natural sam-
ple was not clearly marked as reference, but was listed among the evaluated sys-
tems. In both sections, the lower anchor was set to a sample generated by the
original HTS system. For each sample, 7 stimuli are presented to the listener side-
by-side on the same screen, representing the 5 evaluated systems plus the natu-
ral and the original HTS samples. Each listener rated 10 screens and could play-
back the samples as many times as they wished. The average length of the ut-
terances is 15 seconds. Audio samples from the listening test are available here:
http://speech.utcluj.ro/sped2021_mara/.

The results of the listening MuSHRA tests are illustrated in Figure 5.3 and Fig-
ure 5.4. As shown is Figure 5.3(a) the Tac:Flat system achieved best result in the
naturalness part of the listening tests. One explanation may lay in the fact that the
system learns better the speech spectral characteristics, as the F0 variations range is
not too wide. The worst result were obtained by the Tac:HTS-PF system because
of the postfiltering system’s metallic effect which has been propagated within the
end-to-end process. Although only feedforward layers are used, the Tac:Merlin sys-
tem obtained lower results than the Tac:HTS one, both at the naturalness and at the
expressivity level. This can be explained by the phone-level alignment’s accuracy
which is below the threshold at which the feed-forward network can still compen-
sate for its effects.

For the expressivity section, the Tac:All system obtained the best results. This
was expected, as the system uses the audio data from the entire MARA Corpus. The
poorest results were obtained by the Tac:Merlin system. The obtained values might
be influenced by the fact that the listeners are not speech experts and they inevitable
associate the expressivity with the speech naturalness.

8ITU-R Recommendation BS.1534-1

http://speech.utcluj.ro/sped2021_mara/
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FIGURE 5.3: MARA Corpus: Letter-value plot of MuSHRA scores for
the (a) naturalness and (b) expressivity section [10].

We also analysed the results of MuSHRA Listening test from the perspective of
inter-systems ranking gave by the listeners. These results are illustrate din Figure 5.4
are correlated with the results obtained from the absolute MuSHRA scores described
in Figure 5.3.

Objective evaluation - MSD measure

For the objective evaluation section, in [10] we chose 50 samples from the MARA-
Expr subset, which were not present in the training set. The MSD scores were com-
puted and illustrated in Figure 5.5. As we can notice, the Tac:All system obtained
the highest mean. One explanation may lay in the fact that this set contains all the
natural samples from the entire MARA dataset, which led to a higher prosodic vari-
ation. Furthermore, the lowest results obtained by the Tac:Flat system sustain the
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FIGURE 5.4: MARA Corpus: Violin plot of MuSHRA rankings in the
(a) naturalness and (b) expressivity sections[10].
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FIGURE 5.5: MARA Corpus: MSD scores across 50 testing samples.
The horizontal bars represent the mean MSD values with boxplots

overlapped [10].

contribution of the prosodic variation to the synthesizing process. Apart from these
two opposed results, all the systems which used only parts from the MARA dataset
obtained similar MSD scores. Thus we can conclude that the overall quality of the
output is not influenced by adding synthesised data.

5.1.5 Interpretations, conclusions and future work

Having in mind all the previous interpretations, we can conclude that no statistically
significant differences were found between the systems’ objective ratings. Moreover,
the listening tests showed that although substituting the natural samples with syn-
thesised copies of them in the training data of an end-to-end TTS system the network
is capable of averaging out the spectral artefacts of these samples. Thus, the natural-
ness and the expressivity of the output voice is only minimally affected. As future
work, starting from the experiments described in [10], we intend to analyse other
methods in order to obtain quality expressive synthesise data. Furthermore, we take
into account the possibility of the inter-gender prosody transfer.

5.2 Using Postfiltering to enhance the quality of TTS systems
with limited data

In this subchapter we address the problem of synthesised speech when limited data is avail-
able. The experiments are described in the research paper [9].

5.2.1 Motivation

Neural network based text-to speech systems achieve Mean Opinion Scores (MOS)
close to the natural speech, as in the case of Tacotron2 [392]. The key of a qualitative
synthesised voice is the quantity of the natural data used for training. Recent studies
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FIGURE 5.6: The postfiltering process.

developed TTS systems using generous training data, over 20 hours of recordings in
the majority of cases [3], [286], [310], [393], [394], [395], [396], [397]. For scarcely
spoken languages it is difficult to obtain large datasets to train qualitative TTS. The
most common approaches to overcome this disadvantage consists in fine-tuning or
in adapting the pre-trained model’s parameters using data from the target speaker
or language [398], [399], [400] or in appending speaker or language embeddings to
the acoustic/linguistic features to help the model to learn discriminative features
from the training dataset [395], [399], [401]

Having in mind the previous published research papers, we evaluated the post-
filtering approach to improve the synthesised voice. Consequently, we trained a
TTS system (using various amount of data from different Romanian speakers) and
we pass the resulted voice to a postfiltering network to overcome the limited data.
We obtained 20 systems which were objectively analysed. Furthermore, we selected
7 systems for a listening test, subjectively analysed by native Romanian speakers.

5.2.2 Experimental setup

As the scope of this study was to determine a postfiltering method to improve the
quality of the synthesised voice even when limited training data is available, we
structured the experiments into two steps:

1. train a DNN TTS with different amount of data

2. apply a postfiltering neural network to enhance the trained output

Figure 5.6 illustrates the flow’s overview.
Many recent studies choose to train end-to-end TTS systems, obtaining high

quality output. As already discussed, this approach requires generous amount of
input data, which can be challenging to obtain, especially for the languages such
as Romanian. Thus for the experiment descried in [9] we decided to train a statis-
tical parametric network, using the setup described in [47]. Our approach consists
in multiple steps. First, we prepossessed the input text to obtain the HTS format
labels files, as introduced in [391]. As all experiments were applied to the Roma-
nian language, thus the obtained linguistic features were derived using a Romanian
TTS front-end described in [389]9. These lexical features were paired with the cor-
responding audio files and fed to a DNN TTS network. Secondly, the synthetic and
the natural feature vectors were aligned using the Dynamic Time wrapping [402].
The resulted aligned pairs were fine tuned using the postfiltering network.

9available online at www.romanianTTS.com
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5.2.3 Datasets

As described in [9] all the experiments were run over a subset from the SWARA
[8] Romanian speech corpus 10. 8 female speakers (BAS, CAU, EME, DCS, DDM,
HTM, PMM and SAM) were selected out of all the 17 speakers contained in corpus.
Two additional female voices (MAR and BEA) were recorded for testing purposes, in
similar recording conditions and using the same prompts as for the SWARA corpus.
We have to mention none of the recorded speakers were professional speakers nor
actors. The audio data was manually segmented at utterance level and sampled at
48Hz and 16bps.

As this work was part of the SINTERO research project 11, we have to mention
that I, in particular, was responsible for recording my own voice for testing (MAR
voice) and for processing the resulting audio files. Moreover I also dealt with the
systems which were trained based on the MAR voice and analysed their results ob-
tained within the experiments from [9].

5.2.4 TTS systems

The TTS systems are based on the Blizzard Challenge 2017 Merlin [47] setup. We ex-
tracted the acoustic features with WORLD vocoder resulting 59 plus the 0th Mel gen-
eralised coefficients, 5 band aperiodicity coefficients and a fundamental frequency
(F0), enriched with delta and delta-delta values. The neural network is composed of
6 fully connected layers with 1024 nodes and tanh activation function. Other neu-
ral configurations (4, 5 or 6 layers with 256, 1024 neurons per layer or with bottle-
neck 1024-512-256-512-1024) with different activation functions (tanh or ReLu) were
tested within the feed-forward approach.

The amount of input training data varies from 50 utterances (approx. 5 minutes),
100 utterances (approx. 10 minutes) up to 500 utterances (approx. 50 minutes) and
consists in pairs of linguistic and acoustic features. These training systems are re-
ferred to as M*. The training utterances are arbitrary chosen from the Romanian
newspapers, thus they are not phonetically balanced nor filtered. In an attempt to
enrich the dataset, we trained two more systems with doubled input data, by sim-
ply adding twice the initial data (ID: Db). This approach was also analysed for the
postfiltering setup. We entitled the resulted TTS as M*Db_P*Db.

The postfiltering neural networks were based on voice conversion technique (tar-
geting an initial voice to sound like a desired voice) and speaker adaptation (an eigen
voice - trained over mixed data from multiple speakers - is targeted to the acoustic
features of a certain speaker).

5.2.5 Evaluation and results

The results obtained from our expressivity experiments [9] were evaluated both with
the subjective and the objective methods.

Subjective measure - Listening tests

Although the objective evaluation methods are preferred due to unbiasness, they
do not truly correlate to the perceptual evaluation of the synthesised speech. Thus,
we conducted listening tests to analyse the TTS output. We selected 7 systems for

10The corpus is available online at speech.utcluj.ro/swarasc/
11https://speech.utcluj.ro/sintero/

https://speech.utcluj.ro/sintero/
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TABLE 5.2: Synthesis systems’ description [9]

No. System ID Listening test No. uTTS No. uTTS Postfiltering architectureID voice training postfiltering

1 NAT H Natural N/A N/A

2 M050 A 50 N/A N/A
3 M050Db - 50x2 N/A N/A
4 M100 B 100 N/A N/A
5 M100Db - 100x2 N/A N/A
6 M500 G 500 N/A N/A

7 M050_PF050 - 50 50 6 TANH x 1024
8 M050Db_PF050Db - 50x2 50x2 6 TANH x 1024
9 M100_PF100_4TANH256 - 100 100 4 TANH x 256

10 M100_PF100_5TANHBTLNK - 100 100 5 TANH (1024-512-256-512-1024)
11 M100_PF100_6TANH1024 C 100 100 6 TANH x 1024
12 M100_PF100_4RELU256 - 100 100 4 RELU x 256
13 M100_PF100_5RELUBTLNK - 100 100 5 RELU (1024-512-256-512-1024)
14 M100_PF100_6RELU1024 - 100 100 6 RELU x 1024
15 M100_PF_MSPK E 100 10x100 Multi-speaker 6 TANH x 1024
16 M100Db_PF100Db D 100x2 100x2 6 TANH x 1024
17 M100_PF100Db - 100 100x2 6 TANH x 1024
18 M500_PF500 - 500 500 6 TANH x 1024

No. uTTS for eigen voice No. uTTS for target speaker

19 SPKA100_E100 F 10x100 100
20 SPKA100_E500 - 10x500 100
21 SPKA500_E500 - 10x500 500

both MAR and BEA voices recorded for testing purposes. We created one separate
listening test for each voice which were evaluated by 20 Romanian native speakers.

The listening tests contain 4 sections:

1. Naturalness - evaluated with a 5 MOS scale (Mean Opinion Score) from 1 =
Unnatural to 5 = Natural.

2. Speaker-similarity - evaluated with a 5 MOS scale (Mean Opinion Score) from
1 = Not similar to 5 = Very similar.

3. Intelligibility - evaluated with WER (Word Error Rate).

4. ABX naturalness - listener has to decide which audio output sounds more nat-
ural from random pairs of systems.

Figure 5.7 describe the results obtained during the listening tests. In (a) and (b) the
fedbars represent the mean value with boxplots overlapped. In (c) bars represent
the average WER. In (d) the horizontal bars represent the preference for one system
against all others, no preference, or preference for any of the other systems.

The System G is considered to be the baseline, as it uses most of data for training.
However, we were more interest in the systems using as little data as possible (5 or
10 minutes) as the scope of this study [9] was to analyse the impact of postfiltering
methods to the synthesize speech. From the listening test, we can conclude that the
postfiltering increased the systems’ speaker similarity and their naturalness, as ob-
served from the results obtained by system C, for the both speakers (BEA and MAR).
When the input data was doubled, the naturalness of the output speech increased,
although no visible improvements were obtained for the speaker similarity criteria.
Moreover, the intelligibility decreased for all the systems after the postfiltering, with
little gain when the data was doubled. The systems trained with data from multiple
speakers obtained better results at the speaker similarity sections, compared with
the speaker dependent systems.
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Objective measure - MCD

All the 7 selected systems were objectively evaluated using the average Mel Cep-
stral Distortion. For both voices selected for testing (BEA and MAR), we synthesised
50 utterances not present in the training set and we compute the MCD score for
all the 7 selected systems. Results are illustrated in Figure 5.7. As we anticipated,
the systems M500 and M50 obtained the best and the worst results respectively. If
we analyse the results obtained by the postfiltering systems, we can observe that
the MCD scores decreased with 5% to even 7.5% for the M500_PF500 system. Ar-
tificially doubling the data increased the systems’ quality. Doubling the data for
both training and postfiltering led to a decrease of 10% for the MCD values. How-
ever, doubling the data only for the postfiltering step slightly changed the results. If
data for multiple speakers is available, speaker adaptation technique proved to be a
solution: systems SPKA100_E100, SPKA100_E500, SPKA500_E500 obtained one of
the lowest MCD scores. In spite of these results, when we used multi speaker data
only for the postfiltering step, the system obtains results comparable only with the
speaker dependent filter.

5.2.6 Conclusions and future work

The results obtained during the experiments described in [13] proved that postfil-
tering and artificially doubling the data improved the quality of synthesised speech.
Moreover, the two techniques can be jointly used when insufficient training data is
available. The postfiltering results can be explained by the fact that as it only learns
a mapping of vectors sampled from similar feature spaces, it actually learns where
the TTS system failed with respect to the natural samples, not to the lexical input.
Artificially doubling the data has effect at the DNN setup level. The training uses
batches of data, which are not sequentially selected. Doubling the data leads to more
samples to learn from, which can improve the output.

When we listen to the synthesised samples we observed that the postfilter cor-
rected many of the voiced/unvoiced decision errors of the TTS system. Moreover
the buzzines was also reduced. Despite all this, the postfilter systems’ output sounds
more metallic which lead to an undesired decrease of the intelligibility. The over-
come of this side effect is one of the focus of our next studies.

As future work, beside training more different TTS network architectures, we
intend to study other vocoders or to add more features to the postfilter network’s
input, like lexical or speaker embeddings. For the multispeaker scenario, we intend
to analyse the weights tuning for the target speaker. Moreover, we did not address
the male voices, which can offer a different context and behaviour.
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FIGURE 5.7: Listening test results for speakers BEA and MAR:
(a) Naturalness MOS scores, (b) Speaker similarity MOS scores, (c)

Intelligibility WER, and (d) ABX preference. [9]
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MAR systems. Horizontal bars represent the mean MCD values, and

are overlapped with boxplots. [9]
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Chapter 6

Conclusions

This book gathers together machine learning based solution for problems from text
processing and speech synthesis.

For the Natural Language Processing (NLP) part, we focused on two directions.
On the one hand, we applied several machine learning models to automatize the
process of extracting relevant information from the medical records. We analysed
both the supervised (text classification [14]) and the unsupervised (document clus-
tering, topic modelling [2]) learning techniques. The experiments were run for writ-
ten English. On the other hand, we addressed aspects from the text annotation
field by applying neural networks based solutions in tasks like automatic diacrit-
ics restoration [12], automatic lemmatization [11] or POS tagging [13]. These latest
experiments were run for texts written in Romanian.

In our experiments from [11], [12], [13] we trained our deep learning systems in
a supervised manner, with labelled pairs of words and their corresponding annota-
tions (lemma, diacritized form or POS tag, depending on the researched task). The
input text was encoded and passed to a encoder-decoder architecture. As future
work, we will focus on analysing different types of neural networks, such as bidi-
rectional LSTMs, GRU, or only attention based architectures (transformers), which
are already frequently applied in other text processing tasks. As already stated in
Section 2.2.6, even if transformer based networks successfully solves NLP tasks in
widely used languages (English, Mandarin), we have to analyse the impact on the
training process of the limited amount of data if we want to apply these systems to
the Romanian language. Furthermore, inspired by other studies in the field of text
processing, we intend to explore more types of encoding for the input text, such as
word embeddings or conceptualized embeddings (BERT). Nevertheless, enriching
the input text with more context information may lead to better results in predicting
the desired annotation. However, we have to mention that the scope of studies [11],
[12], [13] was to automatically process the input text using the minimum context
knowledge, due to the lack of large annotated corpora in Romanian.

Beside automatically annotating texts written in Romanian, we applied the ma-
chine learning NLP algorithms to ease the work of the medical physicians. We
focused our work on two main directions: determine patients’ medical diagnostic
through topic modelling techniques [2] and interpreting the psychological question-
naires’ results [14]. At first, we created a dataset consisting of the personal records
of a family doctor, gathered during the consultations. The dataset contains 102 in-
stances, consisting in written text, more precisely the clinical observations and the
prescribed treatment, both in English, and numerical data for the patient’s response
to treatment encrypted from 1 = non-responsive to 5 = very responsive. Another di-
rection was working with personality data, by combining cognitive psychology and
machine learning. We analysed over 200 instances with more than 60 variables, as
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each participant at the study was asked to answer to a 60 questions communication
style questionnaire together with measuring the personal stress level (low, medium,
high). For the obtained dataset and the current task, we trained and tested 6 machine
learning classifiers.

As future work for the NLP tasks using medical data, described in [2] and [14]
we intend to analyse the impact and the efficacy of other types of machine learning
and deep learning algorithms. Secondly, it would be of interest to study medical
data written in the Romanian language, having in mind not only the language par-
ticularities (diacritics, spelling, etc), but also the challenge of gathering the input
data, as Romanian is a scarcely represented language. Moreover, we can apply the
systems developed in [11], [12], [13] to automate the text’s annotation and to correct
its undiacritised written form.

For the Text to Speech Synthesis part, the aim was on increasing the quality and
the expressivity of the synthesised voice. We analysed different neural networks
architectures using Romanian texts as input. Our approaches are novel in relation
to the Romanian Speech Synthesis field and have been published in research articles
within conferences proceedings [9] [10].

In our experiments from [9] we researched the potential of postfiltering tech-
niques to enhances the quality of TTS systems with low resourced data input avail-
able. We split our approach in two parts: first we trained the TTS systems with dif-
ferent amounts of data, then we applied a postfiltering neural network to enhance
the trained output. The amount of the input training data varies from 50 utterances
(approx. 5 minutes), 100 utterances (approx. 10 minutes) up to 500 utterances (ap-
prox. 50 minutes) and consists in pairs of linguistic and acoustic features. Moreover,
we trained two systems with doubled input data, by simply adding twice the ini-
tial data, in order to analyse if the quality of the output is influenced rather by the
physical amount of data than by the data content. The postfiltering neural networks
were based on voice conversion technique (targeting an initial voice to sound like
a desired voice) and speaker adaptation (an eigen voice - trained over mixed data
from multiple speakers - is targeted to the acoustic features of a certain speaker).
These latest experiments were run for texts and audio samples in Romanian and the
results are detailed in [9]. As this work was part of the SINTERO research project1

we have to mention that I, in particular, was responsible for recording my own voice
for testing (MAR voice) and for processing the resulting audio files. Moreover I also
dealt with the systems which were trained based on the MAR voice and analysed
their results obtained within the experiments from [9].

Research paper [10] analyses different ways to enrich the expressivity of the TTS
systems in a low resourced emotional/expressive dataset context. With this purpose
in mind, we first created an expressive dataset in Romanian, consisting in an audio-
book (Mara - written by Ioan Slavici) which was manually segmented in smaller
files, following the speaker’s phrase break pauses. The written text was annotated
through the RACAI Relate Platform with high-level linguistic information as de-
scribed in Section 5.1.2. Starting with MARA dataset we analysed the impact of
synthesized speech data to the overall TTS expressivity. We trained 5 different TTS
systems with various amount of expressive data as input: None, synthesised ex-
pressive data or all natural expressive data. The impact of expressive data and all
the result are described in our research work [10].

As future work for the speech synthesis part, beside training more different TTS
network architectures (attention based, transformers), it is of interest to examine

1https://speech.utcluj.ro/sintero/

https://speech.utcluj.ro/sintero/
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other vocoders or to add more features to the postfilter network (lexical or speaker
embeddings) in an attempt to enrich the synthesised speech quality. For the expres-
sive TTS systems experiments, we intend to analyse other methods in order to obtain
quality expressive synthesise data. Furthermore, we take into account the possibility
of the inter-gender prosody transfer.

Research work as a whole Having in mind all the experiments run for input data
written in Romanian language, we plan to encapsulate all the resources and the sys-
tems described in the present volume in a tool, aiming to help others researchers
within their work. More specifically, we intend to create a Romanian text-to-speech
system, enriched with expressivity, which will be feed with the input written text
preprocessed by the tools analysed in [11], [12], [13] and consisting on the TTS tech-
nologies introduced in [9], [10].
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2. [408] Beáta Lőrincz, Elena Irimia, Adriana Stan, and Verginica Barbu Mi-
titelu. "RoLEX: The development of an extended Romanian lexical dataset
and its evaluation at predicting concurrent lexical information." Natural
Language Engineering (2022): 1-26.

https://scholar.google.ro/citations?hl=en&user=PoPZUGYAAAAJ&view_op=list_works&sortby=pubdate


75
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atstatymas lietuvių kalbai (Doctoral dissertation, Kauno technologijos uni-
versitetas).
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ter thesis, University of Split, Faculty of Science. Department of Informat-
ics, 2022.

3. [428] Harjanto, Shadifa Auliatama, and Ade Romadhony. "Question Tem-
plate Extraction Using Sequence Labeling Approach." 2024 International
Conference on Data Science and Its Applications (ICoDSA). IEEE, 2024.

4. [429] Aydinov, Farhad, et al. "Investigation of automatic part-of-speech
tagging using CRF, HMM and LSTM on misspelled and edited texts."
Proceedings of the 2022 5th artificial intelligence and cloud computing
conference. 2022.



77
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[11] M. Nuţu, “Deep learning approach for automatic romanian lemmatization,”
Procedia Computer Science, vol. 192, pp. 49–58, 2021, Knowledge-Based and
Intelligent Information and Engineering Systems: Proceedings of the 25th In-
ternational Conference KES2021, ISSN: 1877-0509. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1877050921014939.

https://doi.org/https://doi.org/10.1016/j.zemedi.2018.11.002
https://www.sciencedirect.com/science/article/pii/S0939388918301181
https://www.sciencedirect.com/science/article/pii/S0939388918301181
https://doi.org/10.23919/SOFTCOM.2019.8903900
https://arxiv.org/abs/1703.10135
https://doi.org/10.1609/aaai.v33i01.33016706
https://keithito.com/LJ-Speech-Dataset/
https://keithito.com/LJ-Speech-Dataset/
https://doi.org/10.1109/IS48319.2020.9199932
https://doi.org/10.1109/SpeD53181.2021.9587438
https://www.sciencedirect.com/science/article/pii/S1877050921014939
https://www.sciencedirect.com/science/article/pii/S1877050921014939


80
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