Laura-Mihaela LELUTIU

ANALYSIS AND SIGNAL
PROCESSING

Applications with Arduino

[]
|]
Transilvania
I University
Press

2025

EDITURA UNIVERSITﬂTII TRANSILVANIA DIN BRASOV

Adresa: Str. luliu Maniu nr. 41A
500091 Brasov

Tel.: 0268 476 050
Fax: 0268 476 051
E-mail: editura@unitbv.ro

Editura recunoscuta CNCSIS, cod 81

ISBN 978-606-19-1837-9 (e-book)

Copyright © Autorul, 2025

Lucrarea a fost avizata de Consiliul Departamentului de Inginerie electrica

si fizica aplicata, Facultatea de Inginerie electrica si stiinta calculatoarelor

a Universitatii Transilvania din Brasov.

mailto:editura@unitbv.ro

Content

PREFACE 5
PAPER 1 Basic Principle in using a Development Board 7
PAPER 2 Applications using LEDs 14
PAPER 3 Measurement of Environmental Parameters using Analog
Sensors 36
PAPER4 Measurement of Environmental Parameters using Digital
Sensors 53
PAPER 5 Measurement of the Light Level 75
PAPER 6 Traffic Light System for Pedestrian Crossing 105
PAPER 7 Measurement of Voltage and Current Intensity 115
PAPER 8 Measurement using a real-time clock 142

PREFACE

This book was originally designed to be useful for students taking the course
“Signal Analysis and Processing” at Transilvania University of Brasov,
Romania Faculty of Electrical Engineering and Computer Science
Department of Electrical Engineering and Applied Physics, Research
Department - Advanced Electrical Systems.

At the same time, the work is also useful for students in the electronic profile
from other faculties and universities, as well as students from related

specialties.

The book contains eight practical projects made with the Arduino Uno
development board, some of which include several individual applications.
The topics covered in the papers include presenting the basic principles in
using the Arduino Uno development board, the principles of using analog or
digital sensors to measure environmental parameters, distance and
proximity, lighting level, voltage and current intensity, as well as how to
create a real-time clock, which can be useful in creating complex circuits

along with the other applications presented.

Each paper has been designed and structured so as to include all the
information necessary to complete it, without the student having to consult
previous papers, with the risk of repeating certain elements already presented

in them, with the idea of maintaining ease in the implementation of each

6

application. Each paper contains an introductory part in which fundamental
concepts useful in understanding how to use the modules and components
used are highlighted, a detailed presentation of the hardware components
and, where necessary, how to configure them, an individual explanation of
the instructions, functions and operators used in the code sequences,
detailing how to make the electronic assembly, as well as a presentation of
the logic diagram of the operations and the complete code sequence, with an
explanation of the role of each line of code. In addition, each paper contains
a set of additional exercises and conclusions at the end that help consolidate

the concepts addressed in the applications.

Paper 1

INTRODUCTION

BASIC PRINCIPLES IN USING
A DEVELOPMENT BOARD

1. Work Description

1.1. Objectives of the Work

e Understanding the main features of the Arduino Uno board.
e Understanding how to use/program the analog and digital input/output

ports of the Arduino Uno board.

1.2. Theoretical Description
Introduction

Arduino is the most popular open-source electronic platform in the business.
Arduino boards are used to create projects either in small or bigger projects as
it is destinated for teaching but if it used by experts, you can create many
interesting and very complex projects. The Arduino boards are able to read
digital or analog inputs from sensors and other and through the Arduino IDE
the we can choose to do whatever we want and we can send them as output to
control a motor, lighting a LED or actioning a radio transceiver module. The
Arduino Integrated Development Environment (IDE), is an application used
for writing and editing the code that drives the Arduino boards. The IDE code
editor also has many features such as syntax highlighting, automatic indenting,
text cutting and pasting and it also provides a button for compiling and

uploading the code directly to an Arduino board, there is also a text console in

8 Paper 1

which you can find information if the code was successfully compiled and
uploaded to the board but also how much storage space and dynamic memory
it uses. It was written in the Java, C and C++ programming language. It is
operational on Windows, macOS and Linux. The code written in the
application are called sketches. The IDE also offers pre-made sketches that can
help for different types of projects, the sketches also vary from easy programs
to light up an LED to transforming the Arduino into a AVRISP
microcontroller. Different boards have different connections ports, for
example Arduino uno uses a USB type B and the Arduino nano uses the USB
type B mini. Once connected to the computer in the IDE we must choose the
type of board we use and the port of the computer to which it is connected so
that the upload can be properly done otherwise we will receive error messages
in text console.

To choose the board and port of the connection you must go to TOOLS
and there we can choose what Arduino we use and the port to which is
connected, if we use the Arduino nano, we might also need to choose a
different processor as well because some boards may use older bootloaders.
The code for Arduino projects usually consists of 3 main parts [1]:

1. The initialization section in which the pins utilized by the board are
initialized

2. The setup section in which the code sets the initial values

3. And the last part is the loop section where the main code is located that is
run repeatedly, it is used for control.

The board can be powered either through the USB port or from an
external source via the power jack. The positioning and labeling of all the

board's ports and pins can be seen in the following figures.

Analysis and signal processing. Applications with Arduino

Figure 1. 1 Arduino Uno Development Board (from [1])

Voltage 16MHz

ATrmegal BU2

micy BLUSH o

LISE-B par
o Computer

7 o 1ZVOC input
L.1lmm x 5.5mem
Haln ceriter positive

Bt button
1C5P for
USH intarface

[12C) SEL - Saral clock
(E2C) 50 - Serial data

; =13 LED
ot ad
i [{5PT) SCK - Seriad clock
i {5P1) MISO - Master-in, slave-out
; w;:'“: > {SPL) MOSI - Master-eist, slavein
N ULpu!
" -
¥ Output E {SPT) 55 - Slave pelect
Groumd :
.. =} Hote! Pins denoted with =
Tnput waltege

ars PWHM gupportesd

Analeg pin 0
Analag pin 1
Analag pin 2
Analog pin 3
(12C) 504
{126} 561

Interrupt 1
Inkermupt 2
D
RAD

ATmegalld

n Her RESET
BESP for Sk
ATmegaiis M0

Figure 1.2. Ports of the Arduino Uno Development Board (from [1], [6])

10 Paper 1

The following ports will be used during the lab work [1]:

e 5 V power pin: voltage supplied by the board’s internal power source
(avoid using this pin to power high-current external modules).

e GND: ground pin.

e Analog input pin

o Digital input/output pin: 5 V, maximum 40 mA.

o« PWM digital output pin: 5 V, maximum 40 mA. PWM (Pulse Width
Modulation) involves the controlled variation of the output voltage
waveform by rapidly switching the logic level from 1 to 0 (the signal
frequency is approximately 490 Hz), depending on a duty cycle (its value
can range from 0 to 255).

e This allows for generating a variable power signal and simulating

analog voltages between 0 and 5 V using a digital port [2].

10026 =10
sV
ov
t
75% =78V
sV
ov
t
B50% 2.5V
s\
ov
t
Bk 259 1,25V
o
t
sv | 0% (¢ ov
ov

t

Figure 1.3. Voltage Variations at a PWM Qutput (from [2])

Analysis and signal processing. Applications with Arduino 11

The Arduino board can be expanded by attaching modules called shields,
which can be directly connected to the board's external pins (such as GPS,
Wi-Fi, LCD — Figure 1.4, touchscreen, motor control, etc.). These pins can still
be accessed afterward, as most shield modules come with their own extended

pin headers.

Figure 1.4. Using an LCD Shield on an Arduino Uno Board (personal work)

For building electronic circuits that require external components (and when using
components mounted on a printed circuit board is not desired—for example, in
prototype scenarios), a testing board called a breadboard can be used (Figure

sl. 5 — the right side illustrates the electrical connections between pins).

000 =

2OBNOOAUNS

T
o |

TR
R

Nedadddad s
00ONDNANNID

27
£
29
e

Figure 1.5. The Breadboard and Its Internal Connections (from [1])

12 Paper 1

The microcontroller is programmed in a language derived from C++. The
required program is called Arduino IDE and can be downloaded from the
manufacturer's website [6]. After connecting the board and installing and
launching the program, make sure that the correct Arduino board and port are

selected (in the Tools menu, under the Board and Port submenus) [3, 4, 5].

_sketch_mari1a | Arduino 1.6.0 +* - o EE
Edit Sketch |Tools| Help

Figure 1.6. The Graphical Interface of the Arduino IDE Program (from [1], [6])

The most commonly used buttons in the software application are the compile
button (to check for errors), also the upload button and the Serial Monitor

button (to display data sent from the board to the computer).

) sketch_mar20a | Arduino 161 - o IES
File Edit Sketch Tock Help

» =] kS B9

Figure 1.7. Buttons and Menus of the Arduino IDE Program (from [1],
[6])

Analysis and signal processing. Applications with Arduino 13

BIBLIOGRAPHY

1. Tordache, V., Cormos, A. 2019. Senzori, traductoare si achizitii de date cu
Arduino Uno. Bucuresti: Editura Politehnica Press, ISBN: 978-606-515-853-5

2. Lelutiu L.M. 2013. Measuring, data acquisition and processing systems.
Bragov: Editura Universitatii ,, Transilvania” din Brasov, ISBN 978-606-
19-0304-7

3. Lertlakkhanakul, J., Choi, W. 2008. “Building Data Model and Simulation
Platform for Spatial Interaction Management in Smart Home. ” Automation
in Construction, Vol. 17(8): 948-957.

4. Robles, R. J. & Kim, T. 2010. “Applications, Systems and Methods in
Smart Home Technology: A Review”. International Journal of Advanced
Science and Technology, Vol. 15: 41-42; 50-58.

5. Yilmaz, E.N. 2006. “Education Set Design for Smart Home Applications.”
Computer Applications in Engineering Education, Vol. 19(4): 631-638.

6. *** 2016. Arduino: A Technical Reference (First Edition). Sebastopol,
CA: O’Reilly Media, Inc. ,,Arduino IDE”,

http://arduino.cc/en/software/

Paper 2
APPLICATIONS USING LEDs

1. Work Description
1.1. Objectives of the Work

Creating and testing some simple applications circuits that use LEDs.

1.2. Theoretical Description

In this lab work, five practical applications will be created.

Application 1. Blinking LED

This application will use a digital output pin to connect an LED. The goal
is to turn the LED on and off alternately, continuously, by predefining the
duration for which the LED stays on or off.

Application 2. Button-Controlled LED

This application will use a digital input pin to connect a button and a
digital output pin to connect an LED. The goal is to change the state of the
LED from off to on when the button is pressed.

Application 3. Pulsing LED
This application will use a PWM digital output pin to connect an LED.
The goal is to turn the LED on and off continuously, varying its light intensity

between 0 and maximum over a predefined period.

Application 4. LED connected to one of the PWM digital outputs
This application will use an analog input pin to connect a potentiometer

in a variable voltage divider configuration [3],[7].

Analysis and signal processing. Applications with Arduino 15

The goal is to display the digital values provided by the Arduino board
on the screen (in the Serial Monitor), proportional to the voltage at the analog

input.

Application S. Pressure Sensing LED

This application will use an analog input pin to connect a pressure
transducer.

The goal is to display on the screen (in the Serial Monitor) the values
measured by the transducer, proportional to the pressure applied to it, at

predefined time intervals.

2. Hardware Components

The electronic components and modules used in this lab are listed in the

following table:
Component | Characteristics | Quantity Image

Arduino Uno 1
LED Module | LED + resistor 1
Jumper Wire Male-to-Male 5
Button Button + .
Module resistor

Potentiometer | 50 kQ linear 1

16 Paper 2

Component | Characteristics | Quantity Image
Resistive
Pressure FSR 406 + .
Sensor resistor
Module ‘ F 4

The LED module contains, in addition to the LED, a correctly sized
resistor (the sizing method is presented in Lab 3).

The Button module is used to detect a press and control, in this case, the
state of an LED. This transducer can also be replaced with any other type of
button along with a 10 kQ resistor, as will be shown in the following paragraph.

The Potentiometer is used to create an adjustable voltage divider, with
the purpose of applying a variable voltage to the analog input within the range:
0 ... VCC. As aresult, the value measured by the board will be available as a

digital value, ranging from 0 to 1023, proportional to the applied voltage [2].

Vee

P % Uan

GND GND

Figure 2.1. Adjustable Voltage Divider (from [2, 3])

The digital value range is obtained by converting the analog voltage into
a digital signal, a process carried out by the Arduino board using its built-in
10bit ADC.

Analysis and signal processing. Applications with Arduino 17

The analog voltage value can be measured with a voltmeter or
approximated based on the digital value provided by the board, as follows:

U=Val _digl023xVCC (1)U = \frac{V_{al\ dig}} {1023} \times VCC
\quad (1)U=1023Val_digxVCC (1)

The VCC is the supply voltage and is theoretically 5 V [3]. Since the
actual value may differ, calibration will be necessary.

Thus, the VCC voltage supplied by the board will be measured using a
voltmeter, and the measured value will be written in the program when
declaring the VCC variable.

The resistive pressure transducer module detects the level of pressure,
based on the use of a pressure-sensitive resistor FSR 406 [1]. The value
measured by the Arduino board is available as a digital value that ranges
between 0 and 1023.

The pressure sensor is made of three substrates (see Figure 2.2), with a
very high resistance between the electrodes (>10 MQ) when no pressure is

applied.

_ il

Figure 2.2. Internal Construction of the Pressure Sensor (from [2])

Increasing the pressure applied results in an electrical contact between the
conductive substrates, leading to a decrease in the resistance value at its
terminals (see Figure2.3). The resistance value depends not only on the applied
force but also on the flexibility, dimensions, and shape of the object that applies

the pressure [1].

18 Paper 2

100k {
E 1
H:Iki
¢ | h
100 1000
F @

Figure 2.3. Variation of the Pressure Sensor Resistance in Relation to the

Applied Pressure Force (from [2])

The transducer will be powered with a voltage of VCC = 5 V.
Both the pressure transducer module and the button module contain, in
addition to the sensor, a resistor R connected between the module's output pin
(OUT) and ground (GND). For the button, R is called a pull-down resistor
[6] (see Figure 2.4) and serves the purpose of keeping the logical value at 0 on
the module’s output when no pressure is applied to the sensor or the button is
not pressed. Establishing a safe logical level (0 in this case) prevents the
random occurrence of a 0 or 1 value at the digital input of the Arduino board
due to possible electrical noise [5], [7].

For the pressure transducer (see Figure 2.4), R serves both as a pull-down
resistor (in case no force is applied to the sensor, meaning the resistance at its

terminals is very high) and as a component of a resistive voltage divider [4] (it

Analysis and signal processing. Applications with Arduino 19

helps generate an analog output voltage proportional to the sensor's resistance

when force is applied).

——0 VCC ——0 VCC
BUTON
S &
)4 \
{—o our t—o ouT
R R
10k0) 10k0)
GND GND

Figure 2.4. Use of the Resistor R (from [3, 4])

3. Software Components

int variable = value: This sets a value for a 16-bit signed integer variable
(ranging from -32,768 to 32,767).

const: This signifies a constant, modifying the behavior of a variable. The
variable becomes read-only, meaning its value cannot be changed.
unsigned int variabild = valoare: This sets a value for a 16-bit unsigned
integer variable (ranging from 0 to 65,535).

boolean variable = valoare: This sets a value for a logical variable (true or
false).

float variable = valoare: This sets a value for a 32-bit signed floating-point
variable (ranging from -3.4028235E+38 to 3.4028235E+38).

The total number of digits displayed with precision is 6-7 (including all

digits, not just those after the decimal point).

20 Paper 2

Functions and Commands:

e void setup ():

This function (which does not return data and has no parameters) runs
only once at the beginning of the program. It is used to set up general
initialization (setting pins, activating serial ports, etc.).

void loop ():

This is the main function of the program (which does not return data and
has no parameters) and is executed continuously as long as the board is

running and is not reset [7, 8].

pin Mode (pin, mod):
Configures the specified digital pin as either input or output.
o if(condition) {instruction/i} else {instruction /instructions}: Tests
whether a condition is met or not.
o for (initialization, condition, increment) {instruction /instructions}:
Repeats a block of instructions until the condition is met.
o digital Write (pin, value): Writes value to the digital pin.
o digital Read (pin):
e analogRead(pin):
e analog Write (pin, value): Writes a value representing the duty
cycle for a PWM signal, to the specified PWM digital pin.
e delay(ms): Pauses the program for some milliseconds.
o Serial.begin(speed): Sets the baud rate for the serial port in bits per
second.
o Serial. print (value or variable, numbering system): Prints data as

ASCII characters using the serial port.

Analysis and signal processing. Applications with Arduino 21

e Serial. print In (value or variable, numbering system): Prints data
as ASCII characters using the serial port, adding a newline after the
printed data.

e ==: Means "equal to".

4. Application 1. Blinking LED

4.1. Building the electronic circuit

[TTTI
r
m
A At

RN

n]
FTTTTTTI

-]
ad

Arduino Uno

Figure 2.5. Schematic diagram for Application 1(from [2], [7, 8])

22 Paper 2

™ m
xm ARDUINO

Figure 2.6. Electrical connections for Application 1(from [7, 8])
The following connections are made:

e The digital pin 8 on the board is connected via a wire to the IN pin of
the LED module;

e The digital GND pin on the board is connected via a wire to the GND
pin of the LED module.

Analysis and signal processing. Applications with Arduino 23

4.2. Logical diagram

LED part definition
LED ignitian
Keaping the led lit for a time t

Keaping 1he lad off for a whia {

Additional Exercises - Blinking LED

1. Calculate the frequency at which the LED blinks.

2. Modify the code sequence so that the LED blinks at a frequency of 10
Hz.

3. Modify the code sequence.

24 Paper 2

5. Application 2: LED controlled by a button

5.1. Building the electronic circuit

AREF

LED
FF R1

3300

IIHI'H'| [TTTTT]TTT

3 g
57 8§
Ly 111l

Arduino Uno

Figure 2.8. Making the electrical connections for Application 2 (from [7])

The following connections are made:
o The digital pin 8 on the board is connected with a wire to the IN pin of the
LED module;

Analysis and signal processing. Applications with Arduino

o The GND Pin (digital) is connected with a wire to the GND pin of the LED

module;

o The digital Pin 7 is connected with a wire to the OUT pin of the Button

module;

e The GND Pin (power is connected with a wire to the GND Pin of the

Button module;

e The 5V Pin (power) is connected with a wire to the VCC pin of the Button

module.

5.2. Logical diagram and code sequence

L o
Bution pod

e

| ED part dafirifion

ot At eran

1R

Pra s

:

Riad bufton siaius

LED ignition

12§ (T
HaUEL

LED off

const int buton =7,

// defining the button variable corresponding to the digital port 7 where it will

be. connected OUT pin

const int led = 8§;

https://www.reverso.net/traducere-text#sl=rum&tl=eng&text=//definirea%20variabilei%20buton%20corespunz%C4%83toare%20portului%20digital%207%20unde%20va%20fi.%20conectat%20pinul%20OUT%20al%20modulului%20buton
https://www.reverso.net/traducere-text#sl=rum&tl=eng&text=//definirea%20variabilei%20buton%20corespunz%C4%83toare%20portului%20digital%207%20unde%20va%20fi.%20conectat%20pinul%20OUT%20al%20modulului%20buton

26 Paper 2

// defining the led variable corresponding to the digital port 8 where it will be
connected pin IN of the LED module
void setup() {
pinMode(buton, INPUT);
//the button pin is declared as input
pinMode(led, OUTPUT);
//declare the led pin as output
h
void loop() {
boolean stareButon = digitalRead(buton);
//declares the Boolean state Button variable that takes the logical value of
pin condition button
if (stareButon == HIGH) {
//if the condition of the button pin is 1 logic (button pressed)
digital Write(led, HIGH);
//then write the value 1 logically on the led pin (aprinded)
}
else {
//otherwise
digital Write(led, LOW);
//write the value 0 logically on the led pin (turn led)
h
Additional Exercises - LED controlled by a button
1. Modify the code sequence.
2. Modify the code sequence so that when the button is pressed, the LED

toggles to the opposite state (turn off if it was on, or turn on if it was off).

Analysis and signal processing. Applications with Arduino

27

6. Application 3. Pulsating LED

6.1. Building the electronic circuit

.

a»
Zau

-l
Y IS <L 31

[TTTTTTI I’JHI 1

SEMRand

LLELL

Arduino Uno

Figure 2.9. Schematic diagram for Application 3 (from [2], [7, 8])

Figure 2.10. Electrical connections for Application 3 (from [7, 8])

28 Paper 2

6.2. Logical Diagram and Code Sequence

[LED port defimi@mn I
| |
.
| x=0 |
-
-
Mg rua
I x=x41 I

¥

LED lighting
waith il facior x

L 4 3
l ®» =255 I l Feening e lad i@ for a Sme I
L
.
e e
—
I H=N-1 I
¥
LED lgiing
with fill factarx
I Heaping Fe lad it for a Sme @ I

const int led = 10;

//defining the led variable corresponding to the digital port PWM 10 where the
IN pin of the LED module will be connected

void setup() {

pinMode(led, OUTPUT);

//se declara pinul led ca fiind de iesire

h

void loop() {

for (int x=0; x<255; x=x+1) {

//varies the value of x ascending from 0 to 254
analogWrite(led, x);

//write the analog value with the filling factor x on the led pin
delay(20);

//delay 20ms

Analysis and signal processing. Applications with Arduino 29

}

for (int x=255; x>0; x=x-1) {

//varies the value of x decreasing from 255 to 1
analogWrite(led, x);

//write the analog value with the filling factor x on the led pin
delay(20);

//delay 20ms

}

Additional Exercises - Pulsating LED
1. Calculate the time period for one cycle of the LED being on/off (the loop).
2. Modify the code sequence so that the time period for the LED on/off cycle

1S 2.55 seconds.

7. Application 4. LED connected to one of the PWM digital
outputs
7.1. Building the Electronic Circuit

[TTTTTTT TTTTTTTTTI

OFRDWdUON Y

Arduino Uno

Figure 2.11. Schematic Diagram for Application 4(from [7])

30 Paper 2

Figure 2.12. Wiring for Application 4(from [7, 8])

The following connections are made:

e The analog Pin AO on the board is connected with a wire to pin 1 (the
wiper) of the potentiometers.

e The GND Pin (power) on the board is connected with a wire to pin 2 of the
potentiometers.

e The 5V Pin (power) on the board is connected with a wire to pin 3 of the

potentiometers.

2.5.2. Code sequence

float Vcc = 5;

void setup() {
Serial.begin(9600);

}

void loop() {
const int val dig = analogRead(0);
float Uan = Vece*val dig/1023;
Serial.print("Value digital: ");

Analysis and signal processing. Applications with Arduino 31

Serial.println(val_dig);
Serial.print("Tensiune analogica: ");
Serial.print(Uan,3);
Serial.println(" V");
Serial.printin();
delay(1000);
}

Additional Exercises
1. Display the position of the potentiometer cursor in percentage on the
serial monitor.
2.Connect an LED to one of the PWM digital outputs and vary its

brightness using the potentiometer.

8. Application 5. Pressure Sensing LED

8.1. Building the electronic assembly

pressure_transducer
Yes

[TTTTTrd

Arduno Uno

Figure 2. 13. Schematic diagram for Application 5 (from [2], [7, 8])

32 Paper 2

ARDUINO

Figure 2. 14. Realization of electrical connections for Application 5 (from [2], [8])

8.2. Logical diagram and code sequence

Activates SP

Read Value

3

Display

Delay

float Vec =5;
//defining the U variable corresponding to the supply voltage
void setup () {

Analysis and signal processing. Applications with Arduino 33

Serial.begin (9600);

//activates the output of the serial port with a rate of 9600 baud }

void loop () {

const int val_dig = analogRead(0);

//the constant variable of integer wave dig type is declared which takes the
value read at

float Uan = Vcc*val dig/1023;

//analog voltage calculation at input AOQ — see formula (1)

Serial.print (“Digital value:”);

// displays on the serial monitor the text in parentheses
Serial.println(val_dig);

//displays on the serial monitor the read digital value

Serial.print (“Analytical voltage:”);

//displays on the serial monitor the text in parentheses

Serial.print (Uan,3);

/ /displays on the serial monitor the calculated value of the analog voltage, with
three decimal places

Serial.println (* V*’);//displays on the serial monitor the text in parentheses
Serial.println ();//displays a contentless line on the serial monitor

Delay (1000);

//delay next display by 1000 ms}}

Additional Exercises - Reading the pressure level

1. Introduce a LED in the application that will turn on when the pressure value
is less than 50 and turn off when it is greater than or equal to 50.

2. Introduce a LED in the application that will blink if the pressure value is

greater than 100 and turn off when it is less than or equal to 100.

34 Paper 2

The Arduino development board [5], [8] has digital and analog input/outputs
that allow the connection of various external modules that can be controlled or
that can generate commands. In this work, the command modules are: the
Button Module, the Potentiometer, and the Pressure Transducer Module. These
modules serve to transmit commands to the development board and form a
human-machine interface with the Arduino system. The commanded module
is the LED module, which, through the development board, will receive
commands from users. The Button Module will generate digital commands:
pressing the button will generate a logical 1 (+5 V), and the opposite state will
generate a logical 0 (0 V — ground). The Potentiometer and Pressure
Transducer modules will generate analog commands. Each of their outputs will
generate a variable voltage. The command signal (or the signal acquired by the
Arduino development board) will be converted into a digital signal by the
board to be processed.

This conversion is done by an analog-to-digital converter (ADC). The
digital or analog signals acquired on one of the digital or analog lines of the
Arduino development board will be converted into digital values, and these
values will be used as variables in the programs written for the development
board. Certain variables that the programs developed for the Arduino board
work with will need to be sent to the digital or PWM output lines. These will
have a corresponding electrical signal on the output/line to which they were

sent.

Analysis and signal processing. Applications with Arduino 35

BIBLIOGRAPHY

1. Bartmann, E. 2015. Interlink Electronics FSR Series. O’Reilly Media, Inc.,
https://www.interlinkelectronics.com/fsr-406

2. lordache, V., Cormos, A. 2019. Senzori, traductoare si achizitii de date cu
Arduino Uno. Bucuresti: Editura Politehnica Press.

3. Lelutiu, L.M. 2013. Measuring, data acquisition and processing systems.
Brasov: Editura Universitatii “Transilvania” din Brasov, ISBN 978-606-
19-0304-7.

4. Lelutiu, L.M. 2016. Data acquisition. Brasov. Editura Universitatii
,,Transilvania” din Brasov, ISBN 978-606-19-0866- 0

5. Massimo, B. 2009. Getting Started with Arduino. O Reilly Media, Inc.,
https://www.oreilly.com/library/view/getting-started-with/
9780596155704/

6. *** 2015. Arduino Playground, http://playground.arduino.cc/Common
Topics/PullUpDownResistor.

7. *** 2016. Arduino: A Technical Reference (First Edition). Sebastopol,
CA: O’Reilly Media, Inc. ,,Arduino IDE”, http://arduino.cc/en/software/

8. *** 2016. Arduino Boards, https://www.arduino.cc/en/hardware/#boards

https://www.interlinkelectronics.com/fsr-406
http://playground.arduino.cc/
https://www.arduino.cc/en/hardware/#boards

Paper 3

MEASUREMENT OF ENVIRONMENTAL
PARAMETERS USING ANALOG SENSORS

1. Work Description

1.1. Objectives of the Work

e Designing and testing the medium complexity circuits using sensors and
transducers.

e Using the shield-type electronic modules.

e Making a practical application for measuring temperature and relative
humidity values, calculating the thermal comfort index and displaying

them on an LCD screen.

1.2. Theoretical Description
Introduction

Temperature is a physical quantity that characterizes the thermal state of
an environment or a body.

The relationship between them is as follows: tC[°F] =tF[°C] x 1,8 + 32.

Atmospheric humidity is the amount of water vapour in the air. The
relative humidity of the air is the proportional relationship between the current
humidity at a certain temperature and the maximum possible humidity at the
same temperature and is measured as a percentage. It cannot exceed 100%
because the excess is removed by condensation

The thermal comfort index [1] is used to describe the apparent
temperature felt by the human body and is calculated according to the air

temperature and relative humidity, according to the following formula:

ICT = (tc * 1,8 + 32) — (0,55 — 0,0055 * h) * 3.1)
[tc * (1,8 + 32) — 58] '

Analysis and signal processing. Applications with Arduino 37

where t, is the temperature (°C) and h is the relative humidity (%).
The value of the thermal comfort index is interpreted as follows:

e ICT <65, state of comfort;

e 65 <ICT < 80, alert state;

e ICT > 80, state of discomfort.

The purpose of this application is to make an electronic circuit that
measures the temperature and relative humidity of the environment using
analog sensors, calculates the thermal comfort index and displays them
numerically on an LCD screen.

To measure the temperature, a transducer based on a specialized,
precision integrated circuit, LM50 [5], will be used. The transducer outputs an
analog voltage that will be applied to one of the analog inputs of the Arduino
board, having the advantage of a linear characteristic of the variation of the
output voltage in relation to temperature. Based on the analog input voltage,
the board will provide a corresponding digital value, which will be used to
calculate and display the measured temperature.

To measure the humidity, a resistive sensor SYH-2R [3] will be used (the
resistance at its terminals varies according to the humidity) together with a
fixed resistor, to form a resistive voltage divider to provide the Arduino board
[1] with an analog voltage that varies according to measured humidity.

Based on the analog input voltage, the board will provide a
corresponding digital value, which will be used to determine and display the

measured humidity.

2. Hardware Components
The electronic components and modules used in the work are those in

the following table:

38 Paper 3

Component or module | Characteristics | Number Image
of pieces
Arduino Uno 1
Breadboard 82x52x10 mm 1
Display on 2

LCDS lines of 16 1
characters each

Connecting wire Male to Male 8

Temperature transducer
module LMS50 1

Humidity transducer
module SYH-2R IN

Remarks breadboard
In this paper, a breadboard type test board will be used to perform the
electronic assembly using external components (Figure 3.1 - on the right side,

the electrical connections between the pins are symbolized).

Analysis and signal processing. Applications with Arduino 39

+ - abcde fghij -

I
|

i
|

|

EEEEEEE O

=

wmsus wsess swwan

HBRBRREGEIBFRaR2oem e wn
- EEEDR
=
(&)
o
o

ER R EEEEEEEE NN e
I 5 48 133385 EEAEEEEEEEEEEEE
RS NN NN NN EE RN RN EEENWEEN

AR A AR RN EEE NN R EEENNEREE O
A A AR A A A AR A A A EAER AR R R R -

S S AR N A NE AN EEEEEEEEMNRENRER O

:

%i%%i_lllll mammn summs smsss T

§
|

.~ 4+ - abcde fghij +-

Figure 3.1. Breadboard and internal connections (from [3], [7])

The temperature transducer measures the ambient temperature based on
the use of a precision temperature sensor LM50[2]. The sensor can measure
temperatures between —40°C and +125°C, the output voltage being
proportional to the temperature in degrees Celsius and varying in steps of 10
mV/°C. Considering that the sensor also measures negative temperatures,
without the need for a negative voltage source, for the temperature of 0°C the
output voltage is NOT 0 V, but has the value of 500 mV. Based on the variation
of this voltage (ideally between 0.1 and 1.75 V), applied to one of the analog
ports, the Arduino board provides a digital value that varies between 21 and
359 (103 for the temperature of 0°C). The accuracy of the sensor is £3°C at

room temperature and +4°C, over the entire measurement range.

40 Paper 3

Figure 3.2. Temperature Transducer LM50 (from [5])
The transducer will be powered with the voltage VCC =5V

Temperature measurement

To calculate the value of the measured temperature, first determine the value
of the analog voltage (U _temp) applied to the analog input of the Arduino
board, based on the digital value provided by it (val dig_temp).

val_dig_temp - V.
Utemp = 123

(3.2)

Taking into account that the temperature of 0°C corresponds to a value of 0.5
V at the output of the transducer and that the output voltage varies by 0.01

V/°C, the temperature value can be calculated with the following formula:

Utemp—-0,5
001

temp = 3.3)

The humidity transducer [6] measures the humidity of the environment,
based on the use of a resistive humidity sensor. The sensor can measure relative
humidity between 10% and 95% and the variation of the output resistance as a
function of humidity (measured at a temperature of 25 °C) is as shown in

Figure 3.4.

Analysis and signal processing. Applications with Arduino 41

—O VCC

1I"I|'§II['J g

—< OuUT
-

/Tz/‘—o GND

Figure 3.3. Resistive voltage divider (from [2])

The humidity transducer contains, in addition to the sensor, a resistor
connected between the output pin of the module (OUT) and VCC. It forms,

together with the sensor, a resistive voltage divider (Figure 3).

1000 -

Resistance (K2)

0 Ell:l i 11:[:- 5‘{.‘ 5:[:- ?IE .E:I:- EII:I 100
Relative humidity { 2%RH)

Figure 3.4. Humidity transducer and its characteristic (from [1], [6])

The transducer will be powered with the voltage VCC =5 V.

42 Paper 3

Humidity measurement

Since the sensor manufacturer does not provide a calculation formula for
humidity as a function of sensor resistance, the determination of the measured
humidity value will be done by a less accurate method but with acceptable
results for a demonstration laboratory work. The method consists in using a
computer program capable of digitizing graphics in image form (in the present
case Plot Digitizer [3] was used). Thus, by calibrating the X and Y axes, the
values of the digitized feature can be read by clicking with the mouse on each
individual point. The values taken from the graph can be found in the table
below, in the Resistance and Humidity columns. It was chosen to display the
measured humidity in steps of 5% to simplify the code sequence. By using a
resistive voltage divider to which the Vcc voltage is applied, a voltage
proportional to the variation of the sensor resistance (U humid) calculated

according to the formula is obtained at the output:

R
Uumia = Uour = Vee " 5 p—— (34)
sensor

The digital value provided by the Arduino board corresponding to each input

voltage level is calculated according to the formula:

ValDigUmid = 1023 * Uymia (3.5)
Vee
Thus, a range of digital values is established to approximate the value of
the measured humidity (with a step of 5%).
LCD Shield allows characters to be displayed on a liquid crystal display
with LED lighting. It mounts over the Arduino board and has the connectors
such that the board pins will still be accessible.

The LCD screen consists of 2 lines of 16 characters each, each character

being composed of 5x8 pixels. Column (character) numbering it is done from

Analysis and signal processing. Applications with Arduino 43

0 to 15 (from left to right), and of rows from 0 to 1 (from top to bottom).

3. Software components

LiquidCrystal.h is the library that contains the commands for the LCD shield.

LiquidCrystal led (rs, enable, d4, d5, d6, d7) creates an lcd variable

specifying the digital pins used to control the LCD shield.

int variable = value sets a value to a 16-bit signed integer variable (from -
32,768 to 32,767).

const has the meaning of constant modifying the behavior of a variable. The
variable will become Read-only, that is, its value cannot be changed.

variable float = value sets a value to a signed 32-bit floating-point real variable
(from -3.4028235E+38 to 3.4028235E+38). The total number of digits
displayed accurately is 6 — 7 (includes all digits, not just the ones after the
decimal point).

void setup() is a function (which returns no data and has no parameters) that
runs only once at the beginning of the program. This is where the general
program preparation instructions are set (setting pins, enabling serial ports,
etc.).

void loop() is the main function of the program (which returns no data and has
no parameters) and is executed continuously as long as the board is working
and is not reset.

analogRead(pin) reads the value of the specified analog pin.

for(initialization, condition, increment) { statement/ statements } repeats a
block of statements until the condition is met.

switch(variable) / case(value/value range): statement / break compares the
value of a variable with the values specified in the case conditions and
executes the statement when there is a match. The break command exits the

switch statement.

44 Paper 3

led. begin(columns, rows) initializes the LCD screen interface and specifies its
number of rows and columns./cd.setCursor(coloanda, raw) sets the LCD
cursor position.

For the LCD used in this application, the number of columns is from 0 to 15,
and the number of rows is from O to 1.

lcd.clear()

led.print() displays the data (values of some variables)/text between
parentheses on the LCD screen. To display a text it is necessary that it be
placed between quotation marks ("text"). To display the value of a variable
of type char, byte, int, long, or string, write the name of the variable and,
optionally, its number base (variable, BIN or DEC or OCT or HEX). To
display the value of a float or double type variable, write the name of the
variable and after the comma, the number of decimals you want to display
(variable, no. of decimals).

delay(ms).

++ 1s used to increment a variable

Creating custom characters to be displayed on the LCD

variable byte[no. values]| = {values} sets a value to an unsigned byte variable.
In this application the variable defined does not have a single value but a
matrix of values, which has the role of determining which pixels will be on
(value 1) and which pixels will be off (value 0) in the composition of a
custom character (a character of on LCD it consists of 5x8 pixels).

led.createChar(number, variable) creates a custom character that is assigned a
number between 0 and 7, having the pixel distribution according to the
variable.

led.write(number) displays the character at the specified position (number).

Analysis and signal processing. Applications with Arduino 45

In this paper, the custom character will be the one in Figure 3.5, representing

the symbol for degree Celsius.

Figure 3.5. Custom character (from [4])
To calculate the value of the measured temperature, first determine the value

of the analog voltage (U _temp) applied to the analog input of the Arduino
board, based on the digital value provided by it (val dig_temp).

- il
n
AREF

Temperature transducer

Arduine Uno

Humidity Transistor

Figure 3.6 Principle diagram (from [1], [3], [6])

46

Figure 3.7. Electrical connections (from [1], [3])

The following connections are made:

The GND (power) is connected with a wire to the minus bar of the;
The 5V is connected with a wire to the plus;

A0 on the Arduino board is wired to the OUT pin of the temperature
transducer module;

Al is wired to the OUT pin of the humidity transducer module;

The GND pins of the transducers are connected with a wire to the busbar
minus of the breadboard;

The Vcc pins of the transducers are connected with a wire to the plus

4.2. Logic diagram and code sequence

Analysis and signal processing. Applications with Arduino 47

LCD definition
|

Variable definition
|
LCD initialization

o
»

Create custom character
|
Read 500 digital

Read 500 digital humidity values
|
ICT display Average digital humidity value
| calculation

Temperature display

Temperature calculation

Humidity display

I
Humidity calculation

A

ICT calculation
¥

Code sequence
#include < Liquid Crystal. h >

//include in the program the command library for LCD
Liquid Crystal.
//defining the variable degree of type byte, as being a matrix with 8 rows that

have the values in brackets;

48 Paper 3

const int portTemperature = 0;

//defining the portTemperature variable corresponding to analog port A0 where
the OUT pin of the temperature sensor will be connected

const int portHumidity = 1;

//defining the portHumidity variable corresponding to analog port A1 where
the OUT pin of the humidity sensor will be connected

float temp = 0.0;

//define the temperature variable

int umid = 0.0;

//defining the humidity variable

//defining the val dig temp variable that will have the digital value
corresponding to the read temperature

int val_dig_humid = 0.0;

//defining the val dig humid variable that will have the digital value
corresponding to the read humidity

float U_temp = 0.0;

//define the variable for the analog voltage provided by the temperature
transducer

float ICT = 0.0;

//definition of the variable for ICT (thermal comfort index)

float Vce = 5.0;

//defining the variable for the Vcc voltage that will have the initial value of 5V
// initialize the screen interface and specify its number of rows and columns
lcd.createChar(1, degree);

//creating the custom character that will have the contents of the degree array
and assigning position 1 }

//read the digital value corresponding to the temperature 500 times and sum all
the values

val dig humid = val dig_humid + analogRead(portHumidity);

Analysis and signal processing. Applications with Arduino 49

//read the digital value corresponding to humidity 500 times and sum all the
values

delay(1);

//delay 1 millisecond

b

//calculation of the average digital temperature value

//calculation of average digital value of humidity

U temp = (val _dig _temp * Vcc)/1023;

//calculation of the analog voltage equivalent to the read digital value —)
temperature calculation)

switch (val _dig humid) {

//determine the humidity value based on the read digital value
//calculation of the Thermal Comfort Index — formula (1)

lcd.clear();

//clear LCD screen contents

led.print("t=");

//display on the LCD the text between the quotes

led.print(temp,1);

//display the value of the temp variable on the LCD with one decimal place
led.write(1);

//display on the LCD the custom character having position 1

led.print(" h=");

//display the text between the quotes on the LCD screen
led.print(humid);

//display on the LCD screen the value of the umid variable
led.print("%");

//display on the LCD the text between the quotes

lcd. set Cursor (0, 1);

led. print("ICT=");

50

Paper 3

//display the text between the quotes on the LCD screen
led.print(ICT,1);
//display on the LCD the value of the variable ICT, with one decimal place

}

Since the actual values differ from the theoretical ones, a calibration of the

electronic measuring circuit has to be done, by making changes in the software

part:

The Vcc voltage has the theoretical value 5 V. The real voltage will be

measured with the help of a voltmeter, and the measured value will be written

in the program when the Vcc variable is declared.

Additional Exercises and conclusions

1.

Modify the code sequence so that the temperature display is in degrees
Fahrenheit.

Modify the program so that the messages are displayed

"Comfort state" for ICT < 65, "Alert state" for 65 < ICT < 80 and
"discomfort state" for ICT > 80.

. Modify the program to display "Red Code" messages for ICT > 80 and

temperature greater than 30 °C.

Modify the program so that, in addition to displaying the instantaneous
temperature and humidity, it calculates and displays the average values of
temperature and humidity for different time intervals (eg 30 sec., 1 min, 12

hours, 24 hours, etc.).

The role of transducers is to convert a variation of a physical quantity into an

electrical signal. Thus, at the output of the temperature transducer, a voltage

will be found whose value is proportional to the measured temperature.

Analysis and signal processing. Applications with Arduino 51

The range of voltage variation at the output of the transducer is recommended
to be identical to that of the analog input of the acquisition board, in general,
or of the Arduino development board, in this particular case.

This is important to preserve the resolution of the development board,
i.e. the minimum voltage variation sensed by the analog input of the
development board. The adaptation of the voltage variation range from the
output of the transducer to the variation range accepted by the input of the
development board is done by means of signal conditioning circuits. This
adaptation is only necessary if the resolution of the development board is to be
maintained.

A 10-bit resolution for an analog input corresponds to 210 (1024 or 1K)
different voltage levels that can be sensed by that input. For a voltage variation
between 0 and 10 V, at an analog input characterized by a 10-bit resolution,
1024 distinct levels can be obtained between 0 V and 10 V, which means a
minimum detectable variation of 9.765 mV.

All measuring devices and instruments need initial calibration and
periodic calibration.

This calibration is performed using a standard measuring device or
instrument or by generating the measured quantity in the standard system.

The display of information on LCD devices is limited by the resolution
of the display (or the number of pixels per unit of display area), available
memory, writing speed and other parameters, depending on the applications in

which these LCD displays are used.

52 Paper 3

BIBLIOGRAPHY

1. Jordache, V., Cormos, A. 2019. Senzori, traductoare si achizitii de date cu
Arduino Uno. Bucuresti: Editura Politehnica Press.

2. Lelutiu, L.M. 2016. Data acquisition. Brasov: Editura Universitatii
,»Iransilvania din Brasov, ISBN 978-606-19-0866- 0

3. McRoberts, Michael. 2013. Beginning Arduino, 2nd edition. Miinchen,
Oldenburg, Apress, https://www.oreilly.com/library/view/beginning-
arduino-second/9781430250166/

4. Teodoreanu, E., Bunescu, I. 2007. “Thermal Confort”. Journal Present
Environment and Sustainable Development, 1: 135-142. lasi: University
“Alexandru Ioan Cuza”.

5. ***%.1999 /2013. Texas Instruments. LM50/LM50-Q1 — Datasheet
https://ro.mouser.com/new/texas-instruments/ti-lm50-temperature-
sensors/

6. *** 2025. Humidity sensor SYH-2R series — specifications,
https://www.shoptronica.com/files/001 SYH-2R.pdf

7. **%*.2025. Plot Digitize. Arduino IDE, http://plotdigitizer.sourceforge.net/.

http://plotdigitizer.sourceforge.net/

Paper 4

MEASUREMENT OF ENVIRONMENTAL
PARAMETERS USING DIGITAL SENSORS

1. Work Description
1.1. Objectives of the Work

Creating and testing medium complexity circuits using sensors and
transmitters.

Using shield-type electronic modules.

Developing a practical application for measuring temperature, relative

humidity, atmospheric pressure values, and displaying them on an LCD screen

1.2. Theoretical Description
Introduction

Temperature is a quantity that characterizes the thermal state of a
medium or an object. The relationship between the two is as follows: tC[°F] =
tF[°C] x 1,8 + 32. Atmospheric humidity represents the amount of water vapor
in the air. Relative humidity is the proportional relationship between the
current humidity at a specific temperature and the maximum possible humidity
at the same temperature, measured in percentages. It cannot exceed 100%
because any excess will condense out. Atmospheric pressure represents the
force with which air presses down on a unit area of the Earth's surface.
Pressure is measured in Newtons per square meter or Pascal. In the case of
atmospheric pressure, the most commonly used units of measurement are the
millibar (1 mb = 100 Pa = 100 N/m2) and the millimeter of mercury.

Altitude is measured vertically in relation to a reference level, typically

considered to be sea level. Atmospheric pressure decreases with increasing

54 Paper 4

altitude, and vice versa (approximately 10 mb per 100 m, valid up to a
maximum of 3000 m. To calculate altitude based on pressure, the international

barometric formula [1] can be used:

1
altitude = 44330 - (1 — (p/p0)5'255> (4.1)

The standard pressure at sea level is 1013 mb or 760 mm Hg, but it can vary

depending on atmospheric conditions.

Description of the applications

The purpose of these applications is to ultimately create a complex
electronic circuit that measures the temperature, relative humidity, and
atmospheric pressure in the surrounding environment using digital sensors,
performs altitude calculations, and displays them numerically on an LCD
screen. To create a weather station, the clock described in Paper 8 can be

added, and it is recommended to use a larger LCD screen.

Application 1. Measuring humidity and temperature

To measure humidity, a transducer DHT22 [4], containing a capacitive
humidity sensor as well as a temperature sensor will be used, due to the need
for temperature compensation. The measured relative humidity and
temperature values will be transmitted to the Arduino board [2], [5], through

serial communication, using one of the digital input/output pins.

Analysis and signal processing. Applications with Arduino 55

Application 2. Measuring atmospheric pressure and temperature

For measuring atmospheric pressure, a transducer BMP180 [6]
containing a piezo-resistive pressure sensor as well as a temperature sensor
will be used, due to the need for temperature compensation.

The measured atmospheric pressure and temperature values will be
transmitted to the Arduino board through I2C, serial communication, using the
available SCL and SDA data pins on the Arduino board. Inter-Integrated
Circuit serial communication is a type of multi-master, multi-slave
communication invented by Philips Semiconductor specifically for
transmitting data between low-speed integrated circuits and processors or
microcontrollers. The communication bus consists of two lines: one for
transmitting/receiving data and one for transmitting/receiving the CLK signal.
It is mandatory to install a pull-up resistor to 1 on each of the two data lines,

and each circuit connected to an 12C bus must have its own address.

2. Hardware Components

The electronic components and modules used in the laboratory are those listed
in the following table [1, 2], [4,5], [6,7]:

Component or Characteristics | Number of Image
module pieces
Arduino Uno 1
Breadboard 82x52x10 mm 1

Display on 2 lines
of 16 characters
LCDS each 1

56 Paper 4

Connecting wire Male to Male 8 i

Humidity Transducer
DHT22 1

Pressure transduce BMP180 1

Observations
In this laboratory, to assemble the electronic circuit using external components,
a breadboard (Figure 4. 1 - electrical connections between pins are symbolized

on the right side) will be used.

+ - abcde fghij -

s +
|

s -
FEEa

000~ 0 (7 i G RD =2
M mmE M=

EEREEEREREEEEEEERL C

e T T T,

AEEEssssEsEEEEEEEE RS -

88 SEEEE NEEES SREEE

O-O-O-O-0
+ = abcde fghi]j 5 pia

Figure 4.1. The breadboard and internal connections (from [2], [5])

Analysis and signal processing. Applications with Arduino 57

i
g
i
Illlll

§§

llﬂ

"ul'-l:-l:: I:llEl‘!-E- H-ﬂ: GHD

Figure 4.2. Humidity transducer (from [4])

The LCD shield allows displaying characters on a liquid crystal display
(LCD) screen with LED backlighting. It is mounted on top of the Arduino
board, and its connectors are designed so that the board's pins remain

accessible.
The LCD screen consists of 2 lines, each with 16 characters, where each

character is composed of a 5x8 pixel grid.

The humidity transducer measures both relative humidity and ambient
temperature, relying on the use of a calibrated and temperature-compensated
precision sensor (DHT22).

The sensor is capacitive and can measure humidity, providing a digital
data signal output through a serial connection.

The sensor's accuracy is £0.5 °C for temperature and +2% for humidity
[2]. The pinout is presented in Figure 4.2 (NC stands for Not Connected).

The transducer requires the use of a 10 k€ resistor between the data pin
and VCC, acting as a pull-up resistor [5] (see Figure 4. 3). Its purpose is to
maintain a logic level 1 at the data pin of the transducer when switching

between input or output modes, or when there is no signal on this pin.

58 Paper 4

Establishing a stable logic level (1 in this case) prevents the occurrence
of random 0 or 1 values at the Arduino board's digital input due to potential

electrical noise [2].

L—D WO
H

10k .::;

+—< OUT
S -

o
r
£

N

0 NI

Figure 4.3. Utilization of pull-up resistor to (from [1], [2], [S])

The transducer will be powered with a voltage of VCC = 5V.

Measuring humidity and temperature

As it is a digital transducer, the measurement and determination of
humidity and temperature values are done automatically by it. For displaying
them, it is necessary to read the data signal without the need for other
calculation formulas. The method of reading this signal can be implemented in
the code sequence using instructions from the transducer's datasheet [4], but
this requires more time and advanced programming knowledge.

However, there is a faster way to obtain the values for humidity and
temperature, taking advantage of the fact that it is a widely used sensor, by
using a library developed specifically for this type of sensor [6], called DHT.h
(two libraries must be downloaded from the Internet - Adafruit Sensor and
DHT-sensor-library.

The advantage is the implementation in the code sequence with only a

few steps:

Analysis and signal processing. Applications with Arduino 59

e Setting the sensor type.

e Setting the digital pin where the data pin is connected.

e Defining the sensor.

¢ Initializing the sensor.

e Reading the humidity value with the command

e sensor name.readHumidity() and assigning it to a variable.

e Reading the temperature value with the command

sensor name.readTemperature() and assigning it to a variable.

NOTE!
DHT?22 is a “slow” sensor, meaning it will not react instantaneously to
sudden changes in temperature or humidity. Reading from it may take up
to 2 seconds or more [4]. The pressure transducer measures atmospheric
pressure and ambient temperature, relying on the use of a high-precision
and linear sensor (BMP180). The sensor is piezo-resistive and can measure
pressure between 300-1100 mb and temperature between 0-65 °C,
providing a digital data signal output through an 12C serial connection. The
typical absolute accuracy of the sensor is +1 °C for temperature and +£1 mb
for pressure. The pressure transducer also contains two 4.7 kQ resistors
connected between each of the SCL and SDA data pins and VCC, acting
as pull-up resistors (see Figure 4). When an 12C bus is shared by multiple
modules, each having its own set of pull-up resistors, only one set will be
retained, for example, by removing the solder from the SJ1 jumper, circled

in green in Figure 4.4.

60 Paper 4

Figure 4.4. Utilization of pull-up resistors to 1(from [1], [2], [5])

The VDDIO pin is only used when connecting the transducer to
microcontrollers that operate at voltages lower than 3.3V. Since the 12C bus
is used, the Wire.h library should be included in the code sequence, which is
already available in the package of pre-installed libraries in the Arduino IDE.
The transducer will be powered with a voltage of VCC =3.3V.

Measuring atmospheric pressure and temperature

Similar to the humidity transducer, the measurement and determination
of atmospheric pressure and temperature values are done automatically by it,
and for displaying them, it is necessary to read the data signal

And for this transducer, a specially developed library called
SFE BMP180.h [7], can be used in the code sequence (the library needs to be
downloaded from the Internet and imported into the Arduino IDE using the
Sketch -> Import Library... -> Add Library... tab). It should be noted that
temperature is measured first, followed by pressure, in order to compensate for
temperature. Pressure measurement can be done in four modes (n =0, 1, 2, 3),
depending on the desired accuracy, by taking 1, 2, 4, or 8 samples, with

conversion time ranging from 4.5 to 25.5 ms.

Analysis and signal processing. Applications with Arduino 61

The steps required to obtain pressure and temperature value are:
e Define the sensor.
e Initialize the sensor.

e Start temperature measurement using the command
sensor_name.startTemperature().

e Read the temperature value using the command
sensor_name.getTemperature(temp_variable).

e Start pressure measurement using the command
sensor_name.startPressure(n).

e Read the pressure value using the command

sensor name.getPressure(pressure variable, temp_variable).

Altitude calculation
Altitude is automatically calculated when using the SFE_ BMP180.h library.

The altitude value can be read using the command
sensor_name.altitude(pressure variable, p0).

It is important to note that for sea level pressure (p0), the standard value of
1013 mb can be used. However, it is recommended to use the actual value
correlated with atmospheric conditions (a value known by meteorological

institutes and sometimes available online: see [1] for Bucharest.

3. Software Components

is the library containing the pressure sensor commands.
creates a lcd variable

specifying the digital pins used to control the LCD shield.

62 Paper 4

means constant changing the behavior of a variable. The variable will
become Read-only, that is, its value cannot be changed.
sets a value for a signed 16-bit integer variable (from -
32,768 to 32,767).
sets a value for a signed 32-bit floating-point real
variable (from -3.4028235E+38 to 3.4028235E+38). The total number of digits
displayed accurately is 6 — 7 (includes all digits, not just the ones after the
decimal point).
sets a value for a floating-point real variable with
double precision of the float variable.
sets a value for a character variable
is a function (which returns no data and has no parameters) that
runs only once at the beginning of the program. This is where the general
program preparation instructions are set (setting pins, enabling serial ports,
etc.).
is the main function of the program (which returns no data and has
no parameters) and is executed continuously as long as the board is working
and is not reset.
tests whether a
condition is met or not.
!= has the meaning different from.
is a function that initializes the humidity sensor.
is a function that reads and returns the
measured humidity value.
is a function that reads and returns the
value of the measured temperature.

is a function that initializes the 12C bus.

Analysis and signal processing. Applications with Arduino 63

is a function that initializes the pressure sensor.
is a function that commands the start of
the temperature measurement and returns the time required to perform this
measurement.
is a function that reads from the
transducer, and gives the value of the measured temperature to the variable.
is a function that commands the start of the
pressure measurement and returns the time required for this measurement. n
can take values between 0 and 3, signifying the measurement mode that
determines the number of samples.
is a function that
reads and gives the measured pressure value to the variable, compensated with
the temperature specified by temp_variable.
is a function that reads
the altitude value calculated according to the two variables.
initializes the LCD interface and specifies its
number of rows and columns.
sets the position of the LCD cursor. For the LCD
used in this application, the number of columns is from 0 to 15, and the number

of rows is from 0 to 1.

displays the data (values of some variables)/text between
parentheses on the LCD screen.
To display a text it is necessary that it be placed between quotation marks

(“text”).

64 Paper 4

To display the value of a variable of type char, byte, int, long, or string, write
the name of the variable and, optionally, its number base (variable, BIN or
DEC or OCT or HEX).

To display the value of a float or double type variable, write the name of the
variable and after the comma, the number of decimals you want to display
(variable, no. of decimals).

pauses

3.1. Functions, Commands, and Symbols Used

Creating custom characters to be displayed on the LCD

byte variable [number of values] = {values} sets a value for an unsigned byte
variable. In this application, the defined variable has not a single value but an
array of values, which determines which pixels will be turned on (value 1) and
which pixels will be turned off (value 0) in the composition of a custom
character (a character on the LCD is composed of 5x8 pixels).
led.createChar(number, variable) creates a custom character with an allocated
number between 0 and 7, with pixel distribution according to the variable.
led.write(number) displays the character at the specified position (number).

In this laboratory, the custom character will be the one from Figure 4.5,

representing the symbol for degrees Celsius.

4. Application 1. Measuring humidity and temperature

4.1. Building the Electronic Setup

Analysis and signal processing. Applications with Arduino

Figure 4.5. Custom character (from [2], [5])

DHT22

GND

IOREF
RESET
3.3v
5v
GND1
GNDZ
Vin

L1

NC —

|

DATE

A0
al
A2
a3
nd
AS

Veo

SR WENG - OO

A
LIl

10kQ §

Arduino Uno

TTTTTTTI |II|I]IIII

Figure 4.6. Block diagram for application 1(from [2], [4, 5])

66

Paper 4

1 -
i s
oo maialis
f/.-----§_ e
- s N s
- EE . - - - -
Zo0m m omomom (g
e [T
(1100

+

%

+

Figure 4.7. Electrical connections setup for application 1(from [2], [5])

The following connections are made:

* The GND pin (power) on the Arduino board is connected via a wire to the

GND pin of the DHT22 humidity sensor.

* The 5V pin (power) on the Arduino board is connected via a wire to the

VCC pin of the DHT22 humidity sensor.

* Digital pin 8 on the Arduino board is connected via a wire to the DATA

pin of the DHT22 humidity sensor.

* A resistor, with a value of 10 kQ, is connected between the VCC and

DATA pins of the DHT22 humidity sensor, serving as a pull-up resistor.

4.2. Logical Diagram and Code Sequence

Analysis and signal processing. Applications with Arduino

67

o

I Delming sewsnr I

i
I Delming Farnabks I
+
I Delinmy LI I
-
I 5 s ||||I:|||.-ul'_u*
I LD inilialiEal=a I
I Crealmo cuslom ckaracler
-
I Ecndimg bu= My valas
i
I Beading b piriinrs vales
4
I D obipluping hes id &y
+
I Gisplaying &= pedalans
|

#include <DHT.h>

// Including the library commands for the humidity sensor

char sensor_type = DHT22;
// Defining the sensor type

const int sensor_pin = &;

/I Defining the variable sensor pin corresponding to digital port 8 where the

humidity sensor data output will be connected

// Definition of the humidity sensor
float humidity;
// Definition of the humidity variable

float temperature;

void setup(){
humidity sensor.begin();

// Initializing the humidity sensor

68 Paper 4

led.begin(16, 2);

// Initializing the interface with the LCD screen and specifying the number of
rows and columns

lcd.createChar(1, degree);

// Creating the custom character that will have the content of the degree matrix
and allocating position 1

h

void loop(){

humidity = humidity sensor.readHumidity();

// Reading the humidity value

temperature = humidity sensor.readTemperature();

// Reading the temperature value

lcd.clear();

/I Clearing the LCD screen

led.print("Humidity = ");

// Printing the text between quotation marks on the LCD screen
led.print(humidity, 1);

// Printing the humidity variable value on the LCD screen with one decimal
place

led.print("% ");

// Printing the text between quotation marks on the LCD screen
led.setCursor(0, 1);
// Moving the cursor to column 1, row 2

led.print("Temp =");
// Printing the text
// Printing the custom character on the LCD screen at position 1

delay(1000);
// Delaying for 1 second

}

Analysis and signal processing. Applications with Arduino 69

5. Application 2. Measuring atmospheric pressure and temperature

5.1. Implementing the electronic assembly

SCL p—
SDA j——
AREF |—
GND3 |—
BMP180 13 |[—
— IOREF e g
VDDIQ |— — RESET 3 iy [l
— 3.3V 10 |—
vDD 5V G
— GHND1 g —
GND GNDZ
— Vin cr g
sCL (— 6 |
— Al 5 —
SDA —— — Al 4 |—
— AZ i)
e L 2
— A4 2 g
— AS 0 |—
Arduino Uno

Figure 4.7. Block diagram for application 2(from [2], [S])

P
|

5t
|
s
T
L.
&
s
=
s
+
|

Figure 4.8. Electrical connections setup for application 2(from [2], [5])

70 Paper 4

5.2. Logical diagram and code sequence

I Definthg s=asor I

¥
I]'.lrl:'lullu.l variahiss I
3
I Dela=sg 1CO I
I Iestiglization of T4 ks I

I Secrpor ilzlia o I

) 3

I LTS smidia i Sy I

e

r

Siarling Emperalire me s uns mesl I

¥

Bl g I bl TN E I
=

!'il:..'llluH Eslins measdat il I

Ecadmpg picivair wilas

Ecading abirade valac

Giiglaping IES poialirs

iplay g peciande

Dritglapimg alimads

#include <Wire.h>

// including the library for I2C bus commands
#include <SFE_BMP180.h>

// including the library for pressure sensor commands
SFE BMP180 pressure_sensor;

Analysis and signal processing. Applications with Arduino 71

/I defining the pressure sensor

double pres, temp, alt;

// defining variables for pressure, temperature, and altitude

double p0 = 1013;

/I defining the variable p0, sea-level pressure, see section 2 of the document
void setup (){

Wire.begin();

// initializing the 12C bus

pressure _sensor.begin();

// initializing the pressure sensor

lcd.begin(16, 2);

// initializing the LCD interface and specifying the number of rows and
columns

lcd.createChar(1, grad);

// creating a custom character with the content of the grad array and allocating
it to position 1

b

void loop(){

int status;

// defining the status variable as an integer

status = pressure_sensor.start Temperature();

// starting the temperature measurement, the function returns the required time
if (status !=0) {

// if the required measurement time is not zero

delay(status);

// delay for the required time

pressure_sensor.getTemperature(temp);

// assigning the measured temperature value to the temp variable

}

72 Paper 4

status = pressure_sensor.startPressure(3);

// starting the pressure measurement (specifying the desired number of
samples), the function returns the required time

if (status !=0) {

// if the required measurement time is not zero

delay(status);

// delay for the required time

pressure_sensor.getPressure(pres,temp);

// assigning the measured pressure value to the pres variable, compensated with
the temperature temp

b

alt = pressure_sensor.altitude(pres,p0);

/I assigning the calculated altitude value to the alt variable based on the
measured pressure and p0

led.clear();

// clearing the LCD screen

led.print(temp, 1);

// displaying the value of the temp variable on the LCD screen, with one
decimal place

led.write(1);

// displaying the custom character on the LCD screen at position 1

led.print(" ");

// printing the text between the quotation marks on the LCD screen
led.print(pres, 1);

// displaying the value of the pres variable on the LCD screen, with one decimal
place

led.print("mb");

led.setCursor(0, 1);

// moving the cursor

Analysis and signal processing. Applications with Arduino 73

led.print("Alt=");

// printing the text between the quotation marks on the LCD screen
led.print(alt,1);

// display the value of the alt variable on the LCD screen, with one decimal
place

led.print("m");

// display the text between the quotation marks on the LCD screen
delay(1000);

// delay for 1 second

}

Additional Exercises and Conclusions

Modify the code sequence to display a “Red alert” warning when the
temperature exceeds 30°C and humidity exceeds 80%. Remove the automatic
altitude reading function from the code sequence and replace it with the
calculation formula presented in the introduction (formula (4.1)).

Group the two applications into a single one, selecting some data to be
displayed on the LCD screen and others on the serial monitor. For most
programming languages, it is very useful to build libraries of functions or
programs aimed at simplifying the writing of software applications by using
pre-defined functions (especially those commonly used) [1]. A float or single-
precision variable is characterized by the allocation of 4 bytes (32 bits) which
will be used as follows: the first bit will be the sign bit, the next 8 bits will be
necessary for encoding the exponent, and the last 23 bits will be used for
encoding the fraction. Representing data and information in different
environments, as well as abstracting and encoding certain states, require the
use of different data types. The data type is chosen based on criteria regarding
the optimization of written programs. Double type variables require a larger

volume of stored data than float type variables and more processing time.

74 Paper 4

BIBLIOGRAPHY

1. Lelutiu, L.M. 2016. Data acquisition. Brasov: Editura Universitatii
“Transilvania” din Brasov, ISBN 978-606-19-0866- 0

2. McRoberts, Michael. 2013. Beginning Arduino, 2nd edition. Miinchen,
Oldenburg: Apress, https://www.oreilly.com/library/view/beginning-
arduino-second/9781430250166/

3. Teodoreanu, E., Bunescu, 1. 2007. “Thermal Confort”. Journal Present
Environment and Sustainable Development, 1: 135-142. Iasi: University
“Alexandru lIoan Cuza”.

4. *** 2025. Aosong Electronics Co., Ltd. Digital-output relative humidity
& temperature sensor/module - DHT22. https://sigmanortec.ro/en/
temperature-and-humidity-sensor-dht22-am2302-original-module

5. *®** 2015. Arduino Playground, http://playground.arduino.cc/ Common

Topics/ PullUpDownResistor.

6. *** . 2013. Bosch Sensortec. BMPI180 Digital pressure sensor —
Datasheet, https://github.com/adafruit/DHT-sensor-library.

7. *** 2013. SparkFun. BMPI180 Breakout Arduino Library”. Bosch
Sensortec. BMP180 Digital pressure sensor — Datasheet, https://github.
com/sparkfun/ BMP180 Breakout Arduino Library

https://sigmanortec.ro/en/
http://playground.arduino/

Paper 5
MEASUREMENT OF THE LIGHT LEVELS

1. Work Description

1.1. Objectives of the Work

« Designing and testing circuits of medium complexity which use sensors and
transducers.

« Creating a practical application for measuring the illumination levels using
digital and analogue sensors and showing the result on the monitor.

1.2. Theoretical description:

Introduction:

The oscillations of magnetic and electrical fields which are
perpendicularly placed of one another and which are generated reciprocally
are called electromagnetic waves. Like any other oscillation, a measuring unit
which is defining them is the period (measuring unit: [s]) and its inverse is the
frequency (measuring unit: [Hz]).

The propagation speed of electromagnetic waves in vacuum depends on
the medium which they cover, their speed may be slower. Knowing the
propagation speed and the frequency, the wavelength can be computed.

A= ? (measuring unit: [m])

where:
A - wavelength,
v - light speed in the covered medium,
f - frequency of electromagnetic waves.

76 Paper 5

Electromagnetic waves can be classified after their frequency or

wavelength:

Electromagnetic waves of radio-frequency: from some Hz to GHz; for
example, VHF (Very High Frequency) has frequencies between 10MHz -
300MHz and wavelengths between 10m - 1m.

Microwaves: has frequencies between 1GHz - 100GHz and wavelengths
between 300 - 3mm.

Terahertz radiations

Infrared: has frequencies between 300GHz - THz and wavelengths between
1mm - 700nm.

Visible Spectrum (of humans): has frequencies between 430THz - 790THz
and wavelengths between 700nm - 380nm.

Ultraviolet: has frequencies between 790THz - 30PHz and wavelengths
between 10nm - 380nm.

X-Rays: has frequencies between 30PHz - 30 EHz and wavelengths between
10pm - 10nm.

Gamma Rays: has frequencies bigger than 30EHz and wavelengths smaller
than 10pm.

Light, perceived like the stimulus of the human eyes, is only the part of visible

spectrum of electromagnetic waves and it is characterized by:

= Color - is given by the frequency (measured in Hz) or the wavelength of

radiation (measured in nanometers). Color, from the technical point of view,
it is not the same as the color perceived by the human eyes, making a
synthesis of three elementary colors: red, green and blue (RGB). The visible
spectrum begins with the red color (610 - 780 nm) and it ends with the violet
color (380 - 424 nm), as seen in the following figure 5.1:

Analysis and signal processing. Applications with Arduino 77

: Red SOrange EYellow ! Greem |F Blue § Vit |
Q Q Q Q () Q Q
0 N] N 0 0 [}
N 0 0 0 B B)

Figure 5.1. The visible spectrum (from [2])

- The luminous intensity - it is the power emitted on a given direction or the
power transported by the radiation (measured in “cd” - candela).

= The luminous flux - it is measure in “Im” - lumen and represents the total
quantity of radiation emitted by a source.

IHlumination - it is the luminous intensity distributed on a surface (measured
in “Ix” - lux).

Polarization - electromagnetic waves oscillations plans.

Coherence - oscillations phase.
Relations between measurement units presented above are the following:

1w
. _Um _ lcd-1sr gg3gr ST 1 W
T T T T m? ~ 683m2

Conditions of illumination [2] typical for different environments are
presented in the following table:

78 Paper 5

Condition of illumination Luminous intensity
Full moon 11Ix
Street lighting 10 Ix
House lighting 30...300 Ix
Desk lighting 100...1000 Ix
Medical operations lighting 10000 Ix
Direct sun light 100000 Ix

For the detection or measurement of the presented characteristics, there
can be used light sensible devices, like: photoresistors, photodiodes,
photovoltaic cells or phototransistors.

Photoresistor - it is a passive electronic component for which its
electrical resistance is modified depending on the luminous flux.

The sensitivity of the photoresistor is measured in mA/Ix at a constant
voltage, linear for big domains of illumination, however it depends a lot on the
color of the light (also depending on the material used in the construction of
the photoresistor).

The direction of applied voltage does not matter.

e e e

Figure 5.2. Symbols used for photoresistors (from [2])

Analysis and signal processing. Applications with Arduino 79

E

NS 4 U
M

Figure 5.3. Construction & U-1 characteristic of the photoresistors (from [2])

Photodiode - it is a pn junction and it's based on the photovoltaic effect. By
illuminating the active surface, at the diode’s terminals, an electrical voltage
will appear from the anode to the cathode. A photodiode is used reversed
polarized, the reversed current being represented by the illumination current
(for zero illumination, we call it dark current). It has a better sensibility and

response time than the photoresistor.

T~

Figure 5.4. Symbol used for photodiode

o<
Cy

1

\P J e V
o

Si0

Figure 5.5. Construction & U-I characteristic of the photodiode (from [2])

80 Paper 5

Phototransistor - it is a combination of two pn junctions (npn or pnp), like on
the ordinary bipolar transistors, for which it is illuminated at the base-collector
region. The light which falls on the phototransistor generates a base voltage
required for its polarization and causes the apparition of a current collector.

—

Figure 5.6. Symbol used for phototransistor (from [2])

I

A 1,=0
1]|
- / E=ct.
I I

c CEO0

— >
Uce

Figure 5.7. Construction & U-I characteristic of the phototransistor (from [2])

DESCRIPTION OF APPLICATIONS

The goal of these applications is to design electronic circuits which can
measure the level of light by using different methods and display values on an
LCD display or a serial monitor.

Analysis and signal processing. Applications with Arduino 81

1st Application. Measuring the level of light with an analogue sensor

For the measurement of the light level, there will be used a transducer
based on a sensor (PT15-21C/TR8) of phototransistor type. The transducer
provides at the output an analogue voltage which will be applied at one of the
analogue inputs of the Arduino board. On the base of the analogue from the
input, the board will provide a corresponding digital value, which will be used
to display the measured light level on the serial monitor.

2nd Application. Measuring the level of light with a digital sensor

For light measurement there will be used a transducer (TSL235R) based
on a photodiode type of sensor. The transducer provides at the output a digital
rectangular signal having its frequency proportional with the measured light
level by the sensor. The Arduino board will read this frequency and will
display on the serial monitor the corresponding value.

3rd Application. Measuring the level of light with a digital RGB sensor

For the measurement of the RGB light there will be used a transducer
based on a 1SL29125 sensor. This sensor contains a matrix of photodiodes
which decomposes the light in specters of Red, Green and Blue and measures
the light level for all them.

The measured values will be transmitted to the Arduino board, by the
medium of a series communication of 12C type, using the available SCL and
SDA data pins on the board and after they will be displayed on the serial
monitor. Series communication 1°C (Inter Integrated Circuit) is a type of multi-
master, multi-slave communication invented by Philips Semiconductor for the
transmission of data between slow speed integrated circuits, processors or
microcontrollers. The communication bus is formed by two lines, one for the
transmission/ reception of data, SDA (Serial Data Line) and one for

82

Paper 5

transmission/ reception of clock signals, SCL (Serial Clock Line). It is

mandatory to mount a lifting resistor on both data lines and every connected

circuit to a 1°C bus must have its own address.

2. Hardware Components

The components and electronic modules used in this practical work are

presented in the following table:

Component or Number Image
P Characteristics of
module)
pieces
Arduino Uno — 1
Breadboard 82x52x10 mm 1
Connection Wire Father-Father 10 T
Light Transducer | PT15- 21C/TR8 1
Digital Light
TSL235R 1
Transducer
Digital RGB
Light ISL29125 1
Transducer
Logic Level
BSS138 1

Converter

Analysis and signal processing. Applications with Arduino 83

In this practical work, a test bench of breadboard type will be used for the
external components to be used to make the required electric circuit. (Figure
5.8 —in the right side are the electrical connections between the pins shown).

4+ — abcde fghi]j -+ -

©
-3

LR
FEENR D

:

AAR AR AR AR AAERRRE R R R
ONODO BN -
o

Itidin WEEEE EEEER RNENE WEEEN
o
o

T |

%3

LN PITTT R
tIaeBdNT

AREANEERREENNEENE
R R R N Y
AAR AR AR N R AR AR R RN

MR AR RARR RN RN R

AR A AR RN R R R R R RN R R RN

AR ANA RN R R
BRREBEZESa

We ewmms smmnn snans swmes T

+

= & - abcde fghij + -

Figure 5.8. The breadboard and the internal connections (from [1, 2], [7])

The analogue light transducer is used to measure the light level, its operation
being based on a phototransistor NPN of PT15-21C/TR8 type, having small
response time and high sensitivity.

VvCC

ouT

10kQ

GND

Figure 5.9. Analogic Light Transducer (from [1, 2], [7])

The transducer contains alongside the sensor a resistor connected
between the output pin of the module (OUT) and ground (GND). This is called

84 Paper 5

a pull-down resistor [2] (see Figure 9) with the role of maintaining logical
value 0 at the output module when light is not present. Keeping a stable logic
level (O in this case) stops the random occurrences of the values of 0 or 1 at
the digital input of the Arduino board due to the possible electric noise [1].

The bandwidth of the light spectrum that can be detected by the
transducer is between 400 and 1100 nm [4], with the highest sensitivity being
around the value of 940 nm.

The characteristic of the transducer is a linear one, as it can be seen in
Figure 10, though it is not standardized. The transducer will be supplied with
voltage VCC =5 V.

2.1. The Measurement of the Light Level

100

V=5V
Ta=25C

(ma)

10

Colector Current Ic
-

0.1

0.01
0.5 1 3 5

Irradition (—)
rraaition (——=x
cm?

Figure 5.10. The Characteristic of the Light Transducer (from [2], [5])

Analysis and signal processing. Applications with Arduino 85

Depending on the amount of light that falls down on the sensor, the
Arduino board will provide a digital value corresponding between 0 (no light)
and 1023.

The digital light transducer measures the light level by making use a
TSL235R transducer type [5]. This outputs a rectangular signal, having the
frequency directly proportional with the light intensity that falls down on the
photodiode. The bandwidth of the light spectrum that can be detected by the
transducer is between 320 and 1050 nm.

ouT
3.3V
GND

Figure 5.11. The Digital Light Transducer (from [2],[5])

1000 T

Vpp=5V
Ap =635 nm

100 |- T, = 25°C
N
o o
)
' 10 7
B> /
(&)
=
E
o 1 d
(<3
B
- /
= 0.1 7
j=¥
b
= /
S oo01 -
<
.001
0.001 0.01 0.1 1 10 100 1k

E. — Light Level - uwW / cm?

86 Paper 5

The transducer contains, alongside the capacitor connected between the
VCC pin (3.3 V) and ground (GND), used for decoupling. The transducer has
an approximately linear characteristic, as it can be seen in Figure 5.12.

The transducer will be supplied with voltage VCC = 3.3 V.

Taking into consideration that for a light level of 430 pW / cm? the
typical frequency of the output signal is 250 kHz and considering the linear
characteristic of the transducer [5] the following calculus formula will result:

450

e — E'fo =1.72 - fo[uW [em?],

where f, is measured in kHz

For measuring the frequency of the output signal of the transducer with the
Arduino board the use of interrupts has been chosen with the help of the attach
Interrupt function.

The function monitors one of the digital input pins (in the case of the
Arduino Uno board only 2-3 pins can be used) and activates a special function
(named ISR — Interrupt Service Routine) when a specific condition is met (in
this case: the passing from 0 to 1 of the logical level applied at the monitored
pin). The calculation of the frequency presumes the counting of the passes
from 0 to 1 logic of the transducer’s signal that appear in a 1 second period.
For this, the ISR function will contain a simple counter that will be
incremented at each read pulse.

To be remembered! The ISR function [10] cannot have parameters or
return a result and functions such as millis (), micros () or delay () cannot be
used due to them being based on interrupts.

The type 1SL29125 digital RGB light transducer measures the light
level for each three light spectrums, red, green, blue, using a sensor made out
of a photo-diode matrix. The output data are available to be read through a
type 12C bus, the transducer being a slave type device.

Analysis and signal processing. Applications with Arduino 87

The transducer RGB [6] has two domains of optical sensitivity, with
the resolution of 12 and 16 bits, selectable through programming. The infrared
waves are ignored, as well as the noise made by the 50 and 60 Hz frequencies
of the artificial light sources [3].

Figure 5.13. The digital RGB light transducer (from [6])

The pins of the transducer have the following roles:

= INT pin is used for the triggering of an interrupt

SDA and SCL pins are used for the connections to the bus 12C
= GND pin is used for the connection to the ground

- 3.3V pin is used for the supply of the transducer

The transducer contains two resistors of 10kQ value each connected between
the SCL and SDA data pins and VCC with step up to 1 (Figure 5.14). By
eliminating the solder around the jumper circled with green from Figure 5.14
we remove the two resistors, useful when a 12C bus is divided into multiple
modules, each having a set of step-ups to 1 resistor, when external or the

88 Paper 5

included resistors (and automatic activated) in the ATmega328
microcontroller from the Arduino board [3].

Figure 5.14. The use of the step up to 1 resistor (from [1],[7])

The transducer will be supplied with VCC =3.3 V.

The RGB light transducer is supplied with 3.3 V voltage, the 12C bus
will also be supplied with 3.3 V. Because the Arduino board requires 5 V
voltage for the 12C bus, a logic level converter is required. The logic level
converter has the role to divide two circuits which use logic levels with
different voltages, 3.3 V (LV) and 5 V (HV). The converter takes the logical
levels (0 or 1) and sends to the output only the value of the signal’s voltage.
For this practical work a bidirectional logic level converter [8] with four
channels which can transfer the logical values between the two circuits in both
ways (Figure 5.15).

Analysis and signal processing. Applications with Arduino 89

Canal date 1 (5 V) = | Canal date 1 (3,3 V)

Canal date 2 (5V)

Canal date 2 (3,3 V)

[Vvee =5V]Vcc =33V
GND e ———— A I D
Canal date 3 (5 V) = 02 Canal date 3 (3,3 V)

Canal date 4 (3,3 V)

Figure 5.15. The bidirectional logic level convertor (from [1, 2], [7])

Two of the data channels will be used, one for the SCL connection and one for
the SDA one, for the 12C bus.

Measurement of the light level for each RGB component

Because the data readout is made through the 12C bus, the Wire h library
will have to be added to the preinstalled libraries in the Arduino IDE. The
measuring of the light levels for the RGB components with be made
automatically, the data signal will have to be read for them to be displayed.
For this transducer, a special library [9] can be used called
SparkFunlSL29125.h (the library will have to be downloaded and imported
into Arduino IDE using Skecth -> Import Library... -> Add Library...).

The steps required for obtaining the values of the light levels are:

= The defining of the sensor.
- The initialization of the sensor.

= The reading of the light level for the red color using the function
transducer_RGB.readRed().

- The reading of the light level for the green color using the function
transducer_RGB.readGreen().

90 Paper 5

- The reading of the light level for the blue color using the function
transducer_RGB.readBlue().

Depending on the resolution of the analog/digital converter of the transducer,

the domain of values that results from the data readout that is provided by the

transducer can be:

= 0...212-1=4.095 for the 12 bits resolution.

- 0...216 -1 =65.535 for the 16 bits resolution.
These values do not describe the irradiance in a known format. Two of the
known formats, as well as the mode of transforming them are:

- In standard mode, the domain of values that describes the irradiance is 0 — 1°.
To display this, the resulting value is divided by the maximum value of the
measuring domain (4.095 or 65.535).

= Another value domain commonly used is 0 — 255 (e.g. R = 147, G = 244,
B = 84). To display the irradiance, the resulting value is divided by
4095/255 and 65535/255(=257) respectively.

To be remembered! The library SparkFunlSL29125.h has predefined the 16

bits resolution.

The calculation of the general light level

Outside the RGB format, which creates a specific color based on the
three fundamental colors and which differs from one system to another
depending on the accuracy with which the three colors are produced, the XYZ
format is used. This is considered a general format with the help of which any
color that is visible to the human eye can be defined.

The conversion between the two formats is made with the help of a
matrix that contains the transformation coefficients.

The value Y of a color described through the XYZ format represents its
irradiance.

Analysis and signal processing. Applications with Arduino 91

This way, the irradiance measured in lux can be calculated with the
following formula:

re green blue
Y =E, _(CYRZn_) - (YGzn) (YGzn 1) d[lux]

where:

- The C coefficients are the transformation coefficients from the RGB format
into the XYZ format.

- The value of the irradiance for each color will be in the 0 — 1 domain, as
presented previously (for this reason the division by 2n — 1 is used, n being
the resolution of the analog/digital converter of the transducer).

= The measuring domain for the irradiance can be 375 lux or 10000 lux,
depending on the configuration mode of the transducer.
To be remembered! The library SparkFunlSL29125.h has the 16 bits
resolution and the 10000-lux domain predefined.
There exist many defined RGB domains, depending on the purpose in which
these are used, the most known one being the SRGB. The transformation
matrix for it is the following:

0.4125 0.3576 0.1804
0.2127 0.7152 0.0722
0.0193 0.1192 0.9503

As a result, the three coefficients used in the previous formula will have the
following values: CYR =0,2127, CYG =0,7152, CYB = 0,0722.

3. Software Components

is the library that contains the commands for the 12C bus.

92 Paper 5

represents a constant. This variable will be of Read-only type, its value
not being able to be changed.

defines a value for 16 bits signed integer type variable
(from -32.768 until 32.767).

defines a value for a 16 bits unsigned integer
type variable (from O until 65.535).

defines a value for a 32 bits unsigned integer
type variable (from 0 until 4.294.967.295).

defines a value for 32 bits

The total number of digits shown with precision is 6 — 7 (including all digits,
not only the ones after the comma).

is a function (which returns data and has no parameters) that runs
one time at the start of the program. Here, the general instructions for the
program are defined (setting up the pins, the trigger of the serial ports, etc).

is the principal function of the program (it does not return data and
has no parameters) which is executed continuously as long as the board is on
and functioning and has not been reset.

allows the use of interrupts for a digital pin. In the case of the Arduino board,
the use of interrupts can use only the 2 and 3 pins. The modes of activation of
interrupts can be: LOW (when the pin is logic 0), CHANGE (when the pin is
changing its logic value), RISING (when the pin is changing its value from
logic 0 to logic 1), FALLING (when the pin changes from logic 1 to logic 0).

defines the transfer rate of data for the serial port in
bits/second (BAUD).

prints out data under the
form of ASCII characters using the serial port.

Analysis and signal processing. Applications with Arduino 93

prints out data under the
form of ASCII characters using the serial port, moving to a new line after the
data is shown.

read the value of the specified digital pin.

tests the condition and executes a piece
of code depending on the result.

sets a delay in the program for a period of time which is specified
in milliseconds.

is a function that returns as a value the number of milliseconds the
passed from the beginning of the execution of the code.

is a division operator which only displays the integer part of a
division.

is used to increment a variable.

Application 1. Measuring the level of light with an analogue sensor

Electronic assembly

The following connections will be made:

- Pin GND (power) from the Arduino board to the transducer’'s GND pin
- Pin 5V(power) from the Arduino board to the transducer’s VVCC pin

- Pin AO from the Arduino board to the transducer’s OUT pin

94 Paper 5

SCL b=
Analogic light SO (-
transducer -
- 12 b=
ouUT — 11 =
- 3.3 10 f==
vee S5V 9
- GNDI -
GND GND2
- Vin T -
0
A0 o -
- Al 4 f—
- A2 3 -
- A3 2 b
- A4 1 =
- AS 0 b=

Arduino Uno
Figure 5.16. Diagram for application 1(from [1],[7])

ANALOG IN

Figure 5.17. Electrical connections for application 1(from [1, 2])

Analysis and signal processing. Applications with Arduino 95

Logic scheme and code sequence

Serial Port Activation

"

Reading the value for illumination

'

Printing the value for illumination

!

Delay of the next printing by a time ¢

void setup() {
Serial.begin(9600);
/lactivates the output of the serial port

void loop() {
const int llum value = analogRead(0);
/[declaration of a constant integer variable 1lum value, which takes the
value of the analogic input AO
Serial.print("1lum value: *);
/lprints the text in parentheses on the serial display
Serial.printin(valuellum, DEC);
/I displays the recorded value in decimal form
delay(1000);
/ldelays the next display with 1000 ms

96 Paper 5

Application 2. Measuring the level of illumination with a digital sensor

Electronic Assembly

Digital light

CcL }—
transducer D3 [—
ICREF 12 b
ouT — RESET 11 —
— 3.3V 10 f—
vee sV 9 —
-1 GNDI1 8
GND GND2
- Vin T —
6
AO s |—
— A1l 4 —
—{ a2 3 -
— A3 2 o
— a4 1 |-
—_— o —

Arduino Uno

Figure 5.18. Diagram for application 2 (from [1, 2])

anacoc in@D
= =2

T x 22

Figure 5.19. Electrical connections(from [2])
Electric fitting

The following connections will be made:

- Pin GND (power) from the Arduino board to the transducer’s GND pin
- Pin 3.3 V(power) from the board to a transducer’s 3.3 V pin

- Digital pin 2 from the Arduino board to the transducer’s OUT pin

Analysis and signal processing. Applications with Arduino 97

I Defining (transducer) I
¥
I Define variables l
&
I Serial Port Activation I
v
I Digital Initialization I

I Interruption allocation I

> 1<

A

l Moment of time storage I
I IIlumination computing I o = 5
Define ISR function

I Display illumination level I N)
Frequency counter implementation

I Frequency counter reset l

Logic scheme and code sequence

const int traductor = 2;

/[defining the variable corresponding to the second digital port where the
transducer’s output OUT is connected

volatile unsigned long frecv = 0;

[Ivariable corresponding to the frequency of the signal received by the
transducer

unsigned long millis_vechi = 0;

[Ivariable corresponding to the moment of time from which the impulse
counting began

void setup() {

Serial.begin(115200);

/lactivates the serial port output with a rate of 115200 baud

98 Paper 5

pinMode(traductor, INPUT);
//declares the transducer’s pin as the input
digitalWrite(traductor, HIGH);
/Iwrites the logic high on the transducer’s pin in order to begin the counting
from the first impulse
attachinterrupt(digitalPinTolnterrupt(traductor), irg, RISING);
//it interrupts the transducer’s pin and the irq function executes when a passing
from logical 0 to 1 occurs
}
void loop() {
if (millis() - millis_vechi >=1000)
/Icondition that determines the moment of passing a period of 1 second
{
millis_vechi = millis();
/Istorage of a new moment of time from which the impulses counting begins
Serial.print("Nivel lumina =");
/ldisplays the text in the parentheses
Serial.print(1.72*(frecv/1000));
/ldisplays the value of the level of illumination
Serial.printIn(* uw/cm2");
/ldisplays the text in the parentheses
frecv = 0;
/[frequency counter reset
void irq() {
/ISR function
frecv++;
/[Frequency counter implementation

}

Analysis and signal processing. Applications with Arduino 99

Application 3. Light level measurement using an RGB digital sensor

Logic level converter
HV1 LV1
HV2 Lv2
— HV Lv
GND GND
— HV3 LV3 = :
- HV4 Lv4 — - —
- G -
— vin 7 =
6 j=
-{ AQ S |
— Al 4 j=—
T3 — A2 3 -
INT P~ a3 -
SCL b= — A4 1 -
— AS —
SDA
3.3V Arduino Uno
GND
RGB Light Transducer

Figure 5.20. Principle diagram for application 3 (from [2])

The following connections will be made:
= GND Pin (power) of the board to the GND Pin (LV)

= GND Pin (HV) of the logic level converter to the GND pin of the RGB
Light Transducer (it is sufficient, as the GND pins of the converter are
already connected to each other)

= 5V Pin (power) of the Arduino to the HV Pin of the converter
- 3.3V Pin (power) of the Arduino to the 3.3V Pin of the transducer
= 3.3V Pin of the transducer to the LV Pin of the converter

100

Paper 5

- SDA pin of the transducer to the LV2 pin of the converter
- SCL Pin of the Arduino to the HV1 pin of the converter
- SDA pin of the Arduino to the HV2 pin of the converter

Logic scheme and code sequence:

I Define 12C Bus l

[emwacsaoce]

Define variables

I Activate serial port]

Initialise Transducer

Read RED light intensity

3

[Read GREEN light intensity

L

l Compute Light intensity

Read BLUE light intensity I

l Write to display RED light intensity

: 2

l Write to display GREEN light intensity]

l Write to display BLUE light intensity]

I Write to display total light intensity l

Delay nest write to display by time t

#include<Wire.H>

/limporting the 12C bus command library
#include ““SparkFunlSL29125.h”

/limporting the RGB transducer command library

SFE_I1SL29125 RGB_transducer;
/[defining the transducer as 1SL29125 type

float Cyr=0.2127

//defining the Cyr coefficient variable

float Cyg=0.7152

Analysis and signal processing. Applications with Arduino

101

/[defining the Cyg coefficient variable
float Cyb=0.0722

/[defining the Cyg coefficient variable
float Ev;
/[defining the light intensity variable

void setup(){
Serial.begin(115200);
/lactivate serial gate port with a rate of 115200 baud
RGB_transducer.init();
/IRGB transducer initialization

}
void loop(){

/lcomputing light intensity

Serial.print(“Red”);

Serial.print(red/257);

/printing the red light intensity value (0...255 domain)
Serial.print(“‘Blue”);

Serial.print(blue/257);

/lprinting the blue light intensity value (0...255 domain)
Serial.print(““Green”);

Serial.print(green/257);

/lprinting the green light intensity value (0...255 domain)

Serial.print(““Light intensity:™);
Serial.print(Ev,0);
Serial.printIn(“‘lux™);

/lprinting the total light intensity value
Serial.printin();

delay(2000);

/2000 ms delay

102 Paper 5

}
//Attention!

Make sure that in the down right corner of the serial display the 115200 baud
rate is selected

+ — e i+ =
1= - =1
-- - -
2= --zl |
- - - -
= 3. - =
G 4@ - =4 ;;
= 5= - =5 &
7 = u
- - o - -
= = 8
-- - -
- =9
e - =10 o
- - - -
- =11
L - =12 il
-- i - -
- =14 |
-- - -
- =15
et - =16 seghon >
- - - =
- - A - - o
[=
-
- - -- =
- -- o
-- - -
-- =
- --
- - - -
- - - -
s B 0
-- . - -
- = uliw
- - - -
S - == - Fope
30" = = = o= - = = = =30
+ — abcde fgh i + -

Figure 5.21. Electrical connections for application 3 (from [2])

Additional exercises and conclusions

1. Modify the code for application 1 so that it reads the light intensity 10 times
in a second and print their average.

2. Modify the code for application 2 so that the light intensity is measures in
Wicm*cm

3. Modify the code for application 3 so that the light intensity for each color
is printed in the 0...1 domain.

4. Make a single electronic montage that combines the 3 applications and
compare the transducer results.

Analysis and signal processing. Applications with Arduino 103

The output characteristic of the transducers is very important for the
user, giving information about the dependency between input and output. This
characteristic is preferably linear and without medium parameter fluctuations
(such as temperature).

To obtain this linearity, compensation actions are necessary. For cases
in which the output changes depending on the temperature, thermal
compensations are done (components that react inversely with temp are added
compared to the uncompensated transducer).

The 3 color RGB base set is used to obtain any colored light in the visible
specter. This is done by having 3 light sources, each emitting one base color
at different intensities. From a distance the union of these 3 sources will have
a specific color.

Another important parameter of color illuminated surfaces is the
contrast, which is the difference in color and intensity that makes an object
stand out from other objects in the same frame.

104 Paper 5

BIBLIOGRAPHY

1. lordache, V., Cormos, A. 2019. Senzori, traductoare si achizitii de date cu
Arduino Uno. Bucuresti: Editura Politehnica Press.

2. Lelutiu, L.M. 2013. Measuring, data acquisition and processing systems.
Brasov: Editura Universitatii ,,Iransilvania” din Brasov, ISBN 978-606-
19-0304-7

3. Truchsess, W. 2010. ,Effects of Varying 12C Pull-Up Resistors.”
http://dsscircuits.com/articles/effects-of-varying-i2c-pull-up-
resistors.html

4. *** 2003. Everlight Electronics Co., Ltd., ,,PT15-21C/TR8 - Technical
Data Sheet”, https://www.tme.eu/ro/details/elpt15-21c/fototranzistori/
everlight/pt15-21c-tr8/

5. *** 2007. Texas Advanced Optoelectronic Solutions Inc., ,,TSL235R —
Light to-frequency converter”. https://www.farnell.com/datasheets/
323585.pdf

6. *** 2014. Intersil Americas, ,ISL29125 - Datasheet,”
https://www.renesas.com/en/products/isl29125

7. *** 2015. ,Arduino Playground”, http://playground.arduino.cc/
CommonTopics/PullUpDownResistor

8. *** 2015. SparkFun Electronics, ,,Bi-Directional Logic Level Converter
Hookup Guide,” https://learn.sparkfun.com/tutorials/bi-directionallogic-
level-converter-hookup-guide

9. *** 2015. SparkFun Electronics, ,,ISL29125 RGB Light Sensor Hookup
Guide”, https://learn.sparkfun.com/tutorials/isl29125-rgb-light-sensor-
hookupguide

10. ***, 2016. Arduino Boards, https://www.arduino.cc/en/hardware/#boards

http://dsscircuits.com/articles/effects-of-varying-i2c-pull-up-resistors.html
http://dsscircuits.com/articles/effects-of-varying-i2c-pull-up-resistors.html
https://www.tme.eu/ro/details/elpt15-21c/
https://www.farnell/
http://playground/
https://learn.sparkfun.com/tutorials/isl29125-rgb-light-sensor-hookupguide
https://learn.sparkfun.com/tutorials/isl29125-rgb-light-sensor-hookupguide

Paper 6
TRAFFIC LIGHT SYSTEM FOR PEDESTRIAN
CROSSING

1. Work Description

1.1. Objectives of the Work

= (Creation and testing of the circuit of medium complexity that uses sensors
and transducers.
* Development of a practical application that implements a traffic light

system for pedestrian crossing.

1.2. Theoretical Description

Introduction

The purpose of the traffic light systems is to give right of way to a
specific category of traffic participants. The most vulnerable among them are
pedestrians, and the installation of traffic lights at pedestrian crossings is
necessary not only at interactions but also in areas with heavy road traffic or
where a large number of pedestrians frequently cross the street (shopping
centres, schools, etc.). Each traffic light system is characterised by a sequence
of phases that, when combined, form a traffic light cycle (any complete
sequence of the traffic light signals or the time interval from the display of the
green light for one phase until the display of the green light for the next phase).
The allocation of time for the traffic light phase must allow pedestrians to cross
the street in a single phase, without having to stop or turn back.

The sequence of traffic light phases and the allocation of time for each

phase vary depending on the country, the type of pedestrian crossing, its length,

106 Paper 6

specific local characteristics, etc. An example similar to the traffic light system

used in Romania can be found in the following table [1]:

Pedestrians traffic

Phase | Vehicles traffic light light Duration
Green Red 20-60 seconds
B Yellow Red 3 seconds
C Red Red 1-3 seconds
D Red Green E:; ::ZZEZE)
E Red Green flashing 0-2 seconds
Yellow flashing Green flashing 6-18 seconds
G Yellow flashing Red 1-2 seconds

One method to improve safety and traffic flow in the area of pedestrian
crossings (by adjusting crossing times, reducing waiting times) is the
implementation of traffic light systems where the green signal for pedestrians
appears only upon request, thus eliminating pedestrian. The most commonly
used solution for receiving a pedestrian request is the use of a push-button.
However, various types of detection sensors that do not require any action from
pedestrians can also be used, considering that certain categories of pedestrians
(such as children, the elderly, or people with disabilities) might have difficulty
using push-buttons.

Moreover, based on data provided by the sensors, it is possible to
determine when all pedestrians have crossed, allowing for a reduction in the
green light duration for pedestrians. These types of sensors can include:

- Pressure sensors installed on the sidewalk before the pedestrian crossing

(they can have any shape or color, can distinguish between pedestrians and

Analysis and signal processing. Applications with Arduino 107

other static weights like ice or snow, and use technologies based on
inductive loops, easily connectable to traffic management systems), such
as SMARTPED and PEDXPAD [4], [7,8].

- Video cameras and pedestrian detection software (such as C-Walk / Safe
Walk [4], [7]) that monitor predefined areas and are capable of
distinguishing between pedestrians who are crossing, waiting to cross, or

approaching the crossing.

Description of applications

The purpose of this application is to create an electronic circuit that
controls a traffic light system for a pedestrian crossing, which will include a
traffic light for vehicles, a traffic light for pedestrians, and a method for
requesting the change of the traffic lights’ indications at the request of
pedestrians. For this, either a push-button that pedestrians must press or a
pressure sensor that detects their presence will be used. The application will
also allow for the easy adjustment of the traffic light timing. The sequence of

operations can be observed in Figure 6.1.

Vehicles red

Vehicles yellow il [

ast_pedestrian_cycle

Vehicles green

Pedestrian red

Pedestrian green

Button press

¥__|

i++9

t_min_wvehicle_cycle

t_crossing

¥

un
i
=
=
=)

t_safet

2
)
u

=
i

t_safet

—

Figure 6.1. Succession of traffic light colours (from [1, 2])

108 Paper 6

Thus, the traffic light will continuously display green for vehicles and
red for pedestrians until a request is made by a pedestrian. At that moment, the
green light for vehicles will switch to yellow and then to red.

After some safety time, which is needed so cars can free up the traffic
junction, the green pedestrian traffic light will turn on. After the set time
passes, the pedestrian traffic light will start blinking for a period of time, and
after that it will turn off and the red light will turn on.

After some safety time, which is needed so pedestrians can free up the
traffic junction, the green traffic light will turn on.

It is also necessary to implement an imposed minimum traffic signal
cycle time for vehicles, so that pedestrian requests are not serviced too often
one after the other, leaving too little time for vehicular traffic.

LEDs will be used for the lab application, but the use of relays may
allow the control of more powerful light elements powered at higher voltages.

The LEDs and button will be connected to digital ports on the Arduino

board, and the pressure sensor will use one of the analog ports.

2. Hardware Components

The electronic components and modules used in the work are those in

the following table [1, 2, 3]:

Analysis and signal processing. Applications with Arduino

109

Component or L. Nr. of
Characteristics Image
Module parts
Arduino Uno 1
Breadboard 82x52x10 mm 1
LED 5 mm, red 2 =
LED 5 mm, yellow 1 ' —
LED 5 mm, green 2 xm— A
—, ——

LED 5 mm, white 1 s

Values need to be
Resistor 6 —_ e

calculated ["
Connecting Father-Father 1
Wire
Button Button + resist 1
on + resistor

Module "
Resistive Pressure FSR 406 +resistor 1
Transducer Module i

In this lab work, a breadboard test board will be used to realize the electronic
assembly using external components (Figure 6.2 - on the right side are

symbolized the electrical connections between pins).

110 Paper 6

+ - abcde fghij ==

+
I

FEMNNEEEN O

(RN SRS
o

samEE EEEEGR

EEEEERAEANEENEELQ
AESEENAEREEENRE RN o

AARR AR AN R NN REER N ENL
B AR R AR RN RN

B E S ek wa o

reyr N —
R8s

:.tilll%iilﬂﬁ‘l'iﬁﬁlliln-
B

I
§

+ - abcde fghij + -

Figure 6.2. Breadboard and internal connections (from [1,2])

The resistor will be mounted in series with the LED, as shown in Figure 6.3,
and will be used to limit the current through the LED, as the LED operates at
a lower voltage (typically 1.5 - 3 V) than that provided by the Arduino board's
digital output port (5 V).

SV

LED

Ky

CATOD (-) R

ANOD (+)

GHND

Figure 6.3. Using LED current limiting resistor (from [1], [3])

Analysis and signal processing. Applications with Arduino 111

The formula for calculating the resistance value (applying Ohm's law) is as
follows:
=(VS-VEF)/IF
where:
VS =5V (voltage provided by the digital output port of the Arduino Uno
module)
VF (the voltage on the LED diode in conduction) can be found in the
LED diode technical specifications (catalog sheet).
IF (current through the LED diode in conduction) can be found in the
LED diode technical specifications (catalog sheet).

If you don't know the manufacturer of an LED diode, you can use a
potentiometer instead of a resistor and adjust it until the LED produces the
desired illumination, then measure the resistance value and replace the
potentiometer with a fixed resistor (Warning! The current through the LED
should also be measured in order not to exceed the maximum value that can be
provided by the output port of the Arduino board, i.e. 40 mA). Resistive
Pressure Transducer Module senses the degree of pressure, relying on the use
of a pressure-sensitive resistor [5] FSR 406, the value measured by the Arduino
board is available as a digital value ranging from 0 to 1023. It contains a sensor
and a pull-down resistor to 0. The pressure sensor is made of three substrates
(see Figure 6.4), having a very high resistance between the electrodes (> 10
MQ) when no pressure is exerted. Increasing the pressure applied to the sensor
results in electrical contact between the conductive substrates and thus
decreases the resistance value at the sensor terminals (see Figure 6. 5). The
value of the resistance depends not only on the applied force but also on the

flexibility, dimensions and shape of the object applying the pressure [6].

112 Paper 6

—
L .

Sut flexibil semicond Substrat distantier Substrat flexibil cu electrozi intercalati Folie de protectie

Figure 6.4. Internal construction of a pressure sensor (from [1], [5])

100Kk - \
S
<>
2 | Ok
=
oLy
"=
it
=
1k

1 EJO 1(;00
Applied Pressure (g)

Figure 6.5. The Variation of the pressure sensor’s resistance in relation

to the applied force (from [1])

The transducer will be supplied with the voltage VCC =5 V.

The Button Module is used to detect pressing and, in this case, to control
the change of the pedestrian traffic light's color. This transducer can also be
replaced with any other type of button along with a 10 kQ resistor, as
mentioned in the following paragraph.

Both the resistive pressure transducer module and the button module
contain, in addition to the sensor, a resistor connected between the module's
output pin (OUT) and ground (GND). This is called a pull-down resistor down

[2,7], as you can see in Figure 6.6 and serves to maintain the logical value 0 at

Analysis and signal processing. Applications with Arduino 113

the module's output when no pressure is applied to the sensor or when the
button is not pressed.

Establishing a secure logic level (0 in this case) prevents the random
appearance of a 0 or 1 value at the Arduino board's digital input due to possible

electrical noise [8].

VCC VCC

+—0 OUT +——0 OUT

10k() 10k()
GND GND

Figure 6.6. Use of the pull-down resistor (from [3])

3. Software Components

assigns a value to a signed 16-bit integer variable (ranging
from - 32,768 to 32,767).

114 Paper 6

indicates a constant, modifying the behavior of a variable. The variable

will become Read-only, meaning its value cannot be changed.

is a function (which does not return data and has no parameters)
that runs once at the start of the program. Here, general program preparation
instructions are established (pin setup, activation of serial ports, etc.).

is the main function of the program (which does not return data
and has no parameters) and is executed continuously as long as the board is

functioning and not reset.

output.

sets the data transfer rate for the serial port in bits per
second (BAUD).

prints data as ASCII characters

using the serial port.

prints data as ASCII

characters using the serial port, adding a newline after the displayed data.

Analysis and signal processing. Applications with Arduino 115

4. Application 1. Traffic lights system for pedestrian crossings

4.1. Electronic Assembly

Button Mod
Modi on ot

LED Rost LED_Red_Vehicle
A5

.\\ Bu
"' Buton b 4700

"
LED Galbe LED_YellOW_Vehicle

vcc

n gg
10k0 —
GND l 4700
. — LED_Verd sy Grpen veticie
- ouT Aq
C ——v—
B 4700
=l o LED_Rost ™"
s H = A LED_Red_Pedestrian
— .l: [) - r AN 4
i : — 4700
- M =
=" = LED Verde Pietoni
Arduino Uno A5 LED_Green_Pedestrian
4700

Figure 6.7. Diagram for application 1(from [1], [7,8])

The following connections are made:

e Place the LEDs on the breadboard by connecting the anode to the
corresponding output of the Arduino board, the cathode to one pin of the

current-limiting resistor and its other pin to the GND column marked with

non,
2

e Digital pin 2 on the board it is connect with a wire to the green LED anode

of the pedestrian traffic light;

116

Paper 6

e Digital pin 3 on the board it is connect with a wire to the anode of the red

LED of the pedestrian traffic light;

Application 2. Traffic light system for pedestrian crossing [7, 8]

s
:: jEEmE R
imswmen
Pl twewan
E@@daa
0o LR
iEmEEEE
::l (EEEEE
oyl fiNEEan
L
LR NN
- AL
T e EEE
+AiL=
." IR N NN
o
- NE@dda
. !‘L-,

| Ffemmawm

Ll =

el LR
| Meaanad
:: AmEEEE
Ve & @ @&

+ Ehddw

Fgniij
R EE
R EEE
e EEE
LR
LA
A EEE
W EEE
W EE
A EEE
EEE B
LN R
nEaEil
@ EEawl

i~ S

W EEE
B Eir
BB

®EEE ®i0

LELEL RN)

W EEE]

WA E
o EoE
BE oM

R R
(N
LR

LR RN

o EEaEn

W EE A

fghilj

Figure 6.8. Electrical connections (from |2, 3])

4.2. Logical Scheme and code sequence

+ =

Analysis and signal processing. Applications with Arduino

117

Define ports

i

I Define Time I

_

Whait a duration equal ro the
difference berween rimes

t lagt evele of traffic light®
for pedestrians > ¢ minimum
vehicle

Memorization of
pedestrinn traffic
light cycle end time
moment

Stop Vehicle Green LED

[]
Turn on Yellow Vehicle LED
¥

Keep Yellow LED on for duration t_vellow

[]
Stop Yellow Vehicle LED
[
| Turn on Red Vehicle LED |
+
Wairt_safety_1
+
Turn on Green Pedestrian I.ED[
k]
Wait t_traverse
+
Fl.i.nki.u; Green Pedestrinn LED
L)
Turn on Red Pedestrian LED
+
Whaitt_safery 2
¥
Stop Red Vehicle LED
L1
Turn on Green Vehicle LED |
|

118 Paper 6

constint led_green pedestrian = 2;

// define the variable led green pedestrian
corresponding to digital port 2 where the green pedestrian LED anode will be
connected

constint led _red pedestrian = 3;

// defining the variable led red pedestrian
corresponding to digital port 3 where the red pedestrian LED anode will be
connected

constint led_green vehicle = 4;

// define the variable led green vehicle
corresponding to digital port 4 where the anode of the green LED for vehicles
will be connected

constint led_yellow_vehicle = 5;

// definition of the variable led yellow vehicle
corresponding to digital port 5 where the anode of the yellow LED for vehicles

will be connected

constint led_red vehicle = 6;

Analysis and signal processing. Applications with Arduino 119

/l defining the variable led red vehicle
corresponding to digital port 6 where the anode of the red LED for vehicles

will be connected
const int button = 7;
/l defining the button variable corresponding to
digital port 7 where the OUT pin of the button mode will be connected
const int t_yellow = 2000;
//" definition of the yellow time which will have a value of 2 s

const int t_safety 1=2000;

// define safety time 1 to be 2 seconds

const int t_safety 2 =2000;
// definition of safety time 2 which will have a value of 2 seconds const int
t_traverse = 4000;
// defining the crossing time to be 4 seconds
const int t_blinking = 400;
// defining the crossing time to be 4 seconds wunsigned long
t min_cycle vehicle = 10000;

//defining the minimum time imposed for a traffic light cycle for vehicles

unsigned long t_last cycle pedestrians = 0;

120 Paper 6

definition of the initial value corresponding to the time moment of the last

pedestrian signal cycle

// the button pin is declared as input

digitalWrite(led_green vehicle, HIGH);

// the led_green_vehicle lights up (initial state)

digitalWrite(led red pedestrian, HIGH);

//the led red pedestrian lights up (initial state)

void loop()

{
boolean state button = digitalRead(button);

declare that the boolean variable statusButton takes the logical value of the

button pin

it (state button == HIGH && millis() - t last cycle pedestrians <

t min_cycle vehicle)

Analysis and signal processing. Applications with Arduino 121

/I if the button status is logical 1 (button pressed) AND the elapsed time
since the end of the last pedestrian traffic light cycle is less than the
minimum time required for a vehicle traffic light cycle

delay(t_ min_cycle vehicle - (millis() - t_last cycle pedestrians)

/I then waits for a time equal to the difference between the two times
initialize_cycle peetons(); //and then executes the function

initialize_cycle_peetons}

if (state button == HIGH && millis() - t last cycle pedestrians >

t min_cycle vehicle)

{
//if the button status is logic 1 (button pressed) AND the elapsed time

since the end of the last pedestrian traffic signal cycle is greater than the

minimum time required for a vehicle traffic signal cycle

pedestrian_cycle_initiator();

// then execute the function pedestrian_cycle_initiator

}

void pedestrian_cycle initiator()

{

// definition of the pedestrian_cycle_initiator function

122 Paper 6

digitalWrite(led_green vehicle, LOW);

/I write logic 0 to the led vehicle green_led pin (turn off

led_vehicle green led)

digitalWrite(led_yellow vehicle, HIGH);

/! write logic 1 to the led yellow_ vehicle pin (turns

on led yellow vehicle)
delay(t_yellow);
// ' keeps led_yellow_auto on for a period equal to the yellow time
digitalWrite(led_yellow_vehicle, LOW);
/l rite logic 0 to the led vehicle yellow led pin
(turn off led vehicle yellow led)
digitalWrite(led_red vehicle, HIGH);
write logic value 1 to the led ros vehicle pin (turns on led ros vehicle)

delay(t_safety 1);

waits for safety time 1, until the green pedal LED turns on

Analysis and signal processing. Applications with Arduino 123

digitalWrite(led red pedestrian, LOW);

// write logic 0 to the led_ros_off pin (turns off led ros_off)

digitalWrite(led_green pedestrian, HIGH);

write the logic 1 value to the led green_light pin (turns on the led green light)

delay(t_traverse);

keeps the green pedestrian_light on for a period equal to the crossing time

for ()

execute the contents of the for loop 5 times

f
Lt

digitalWrite(led_green pedestrian, LOW);

// write the logic 0 value to the led green pedestrian pin (turn off

led green pedestrian)

delay(t_blinking);
// keeps the green_pedestrian_LED on for a time t_blinking

digitalWrite(led_green pedestrian, HIGH);
// write the logic 1 value to the led green_light pin
(turns on the led green_light)

delay(t_blinking);

124 Paper 6

// ' keeps the green pedestrian LED off for a time t blinking

}
digitalWrite(led_green pedestrian, LOW);

write the logic 0 value to the led green pedestrian pin (turn off

led green pedestrian)

digitalWrite(led_red pedestrian, HIGH);
write the logic 1 wvalue to the led red pedestrian pin (turns on

led red pedestrian)

delay(t_safety 2);
waits for safety time 1, until the green auto led green light

turns on

digitalWrite(led_red vehicle, LOW);

write logic 0 to the led red vehicle pin (turn off led red vehicle)

digitalWrite(led_green_vehicle, HIGH);

//writes logic value 1 to the led_green vehicle pin (turns on led green vehicle)

t last cycle pedestrians = millis();

// the time of the end of the last pedestrian traffic light cycle is memorized

112 Paper 6

Additional exercises and conclusions

The logic or Boolean value is of type 0 or 1 (False or True) and it is
transmitted between the various electronic components and equipment by
means of digital electrical signals (voltage level 0 V means logic 0 and voltage
level +5 V means logic 1). It is very important to understand how to represent
different variables in different environments.

Thus, a Boolean variable can be represented on the screen with the
characters 0 or 1 or with the strings TRUE or FALSE, while for the same
variables transmitted to logic gates or digital inputs an electrical signal with
amplitude level will be used variable according to the logic value transmitted.

Another particularly important aspect for the design and realization of
circuits or equipment that operate within systems that are directly related to
traffic safety (traffic lights, for example) is their design to achieve a certain
degree of reliability and, in case of failure, to ensure the transition from false
response of the circuit or equipment to erroneous response (three states that a
circuit can have will be considered:

e normal operating state - when the circuit response is as designed;

e faulty condition with false response - when the faulty circuit allows
commands to be made that lead to accidents - for example, green antagonist
at traffic lights;

e and the faulty condition with erroneous response - when the faulty circuit
leads to traffic congestion and increased waiting times - e.g. flashing yellow
at traffic lights).

The analog inputs of the Arduino development board take the signal from
the modules connected to it and transmit them to the analog-to-digital
converter, further the signals acquired by the development board are digitally

processed by its components.

Analysis and signal processing. Applications with Arduino 113

When pedestrians press the button, a request must be sent to allow
pedestrians to pass. The request must be analysed by the system in the context
of ensuring a normal flow for both vehicles and pedestrians.

The pedestrian traffic light will not go into the permissive state as soon
as the pedestrian presses the button but, depending on the traffic light phases
at that moment, after a time resulting from the execution of the request
handling algorithm so that the two flows, vehicles and pedestrians, are running
under normal conditions.

Another important aspect is system calibration, i.e. the determination and
adaptation of thresholds and levels of electrical signals to define certain states
of the system or its components. For example, the electrical parameters of the
pressure transducer module may change over time, requiring the system to be

calibrated to the new values.

114 Paper 6

BIBLIOGRAPHY

1. lordache, V., Cormos, A. 2019. Senzori, traductoare si achizitii de date cu
Arduino Uno. Bucuresti: Editura Politehnica Press.

2. McRoberts, Michael. 2013. Beginning Arduino, 2nd edition. Miinchen,
Oldenburg: Apress, https://www.oreilly.com/library/ view/beginning-
arduino-second/9781430250166/

3. ***¥ 2015. “Arduino Playground. Pull-Up and Pull-Down Resistors”,
http://playground.arduino.cc/CommonTopics/PullUpDownResistor

4. *** 2015. “FLIR Systems”, http://www.flir.fr/

5. FEE 2015. “Interlink Electronics. FSR 400 Series”,
http://www.interlinkelectronics.com/datasheets/Datasheet FSR.pdf

6. FEE 2015. Newparts. Caracteristicile intersectiilor,
http://www.newparts.info/2013/05/caracteristicile-intersesctiilor.html

7. %% 2015. SmartPed. Pedestrian Detection, https://smartcitystreets.
com/pedestrian-safety/

8. Fkx 2015. “Traffic Safety Corp. Pedestrian Crossings”,
https://xwalk.com/product-categories/all-signs/pedestrian-signs/ts40-

pedestrian-flashing-led-edge-lit-sign/

https://www.oreilly.com/
http://playground.arduino.cc/CommonTopics/PullUpDownResistor
http://www.flir.fr/
http://www.interlinkelectronics.com/datasheets/Datasheet_FSR.pdf
http://www.newparts.info/2013/05/caracteristicile-intersesctiilor.html

Paper 7

MEASUREMENT OF VOLTAGE AND
CURRENT INTENSITY

1. Work Description

1.1. Objectives of the Work

Creating and testing circuits of medium complexity using sensors and
transducers.

Using shield-type electronic modules.

Developing a practical application for measuring voltage and current values
(in a DC circuit), calculating power and consumed energy, and displaying

them on an LCD screen.

1.2. Theoretical Description

Introduction

Electric current is the directed movement of electric charges that occurs

in an electric circuit consisting of an electric generator, conductors, and loads.
Electric current is characterized by several physical quantities, such as:

- Electric voltage, denoted by U, with the unit of measurement volt (V),
represents the potential difference between two points in an electric
circuit and is proportional to the mechanical work performed by the
electric generator to move an electric charge from one point to another.

- Electric current intensity, denoted by I, with the unit of measurement
ampere (A), measures the electric charge passing through a conductor's
cross-section per unit time.

- Electric power, denoted by P, with the unit of measurement watt (W),

116 Paper 7

represents the energy supplied by an electric generator in a unit of time
and is calculated by the formulaP=W/t=U - L.

- Electric energy, denote by E and measured in watt-hours (Wh), represents
the mechanical work required to transport an electric charge q through
a section of a circuit over a period of time, and it is calculated by the
formulaE=U-1-t=P-t.

Application Description

The purpose of this application is to create an electronic circuit that
measures the voltage applied to a load (an incandescent bulb in the
presented application) as well as the current intensity consumed by it,
perform the calculation of power and consumed energy, and display them
numerically on an LCD screen.

The measurement of electrical voltage using the Arduino Uno board
will be done by applying the voltage to be measured to one of the analog
inputs since the board contains the analog/digital converter necessary for
converting the analog physical quantity into a digital one. For a variation
between 0 V and 5 V applied to the analog input, the Arduino board
provides a digital value between 0 and 1023. When the analog voltage can
exceed the value of 5 V (as will be the case in this work), a voltage divider
is necessary to prevent damage to the microcontroller. The measurement
of electric current intensity using the Arduino Uno board will be done with
the help of a dedicated transducer for measuring it, based on the use of a
Hall magnetic sensor.

The Hall effect (Figure 7.1) consists of the appearance of a transverse
electric field and a potential difference in a semiconductor traversed by an
electric current when it is introduced into a magnetic field perpendicular to
the current direction. The electric current flowing through the

semiconductor material is influenced by the magnetic field, therefore, the

Analysis and signal processing. Applications with Arduino 117

output voltage of the sensor will be directly proportional to the intensity of

the magnetic field.

Semiconductor

U hall

o

Curent |

Figure 7.1. Hall Effect (from [1,2])

On the surface of the transducer, there is a copper conductor through
which the electric current to be measured passes, generating a magnetic field
sensed by the sensor and transformed into a proportional electric voltage
(voltage provided at the transducer output) [1, 2]. Based on the variation of
the voltage at the transducer output (between 0 and 5 V), applied to one of
the analog ports, the Arduino board provides a digital value ranging from 0
to 1023.

2. Hardware Components

The electronic components and modules used in the project are listed in the
following table: [1, 2, 3].

118

Paper 7

Semi-adjustable

) 2 kQ
Resistor
Adjustable —
Resistor g
Bulb 12V, 35W
]] With and without
Connecting wire
connectors
Connecting
Male-Male ._'\‘4
thread
Current
ACST711
transducer
Power supply 35V, 5A

In this work, for assembling the electronic circuit using external components,

a breadboard will be used (Figure 7.2 - the electrical connections between pins

are symbolized on the right side).

Analysis and signal processing. Applications with Arduino 119

DE~NOHEWBN
<]

L R

i

i

Besagaia

lillt!l!'llllllii!l ERERN D
:l wemms samss senms smwws °

!#Iitl BEEEE SEEEN BEENE FEEES
1]
Q
]
[+]

Figure 7.3. Current transducer (from [1,2])

The current transducer [3] measures the intensity of the current absorbed by
the load, based on the use of a linear Hall magnetic sensor (ACS711EX). The
transducer can measure electric currents with intensities between -15.5 A and
15.5 A, having an internal resistance of approximately 0.6 mQ and electrical
insulation for voltages up to 100 V. The output voltage at rest (the current is
0 A) is Vee/2, i.e., 2.5 V. However, this value can vary depending on the
actual value of the applied Vcc and the thermal drift of the sensor (+5%), see

Figure 7.4.

Paper 7

120

'y
Increasing Vo, (V)
Accuracy
Owver ATemp erature

Accuracy
25°C Only

Awerage
Viour

Accuracy
Over ATemp erature

Accuracy.
25°C Only

tp(max)

Accuracy
25°C Only

Accuracy
Ower ATemp erature
Decreasing Viouw(V)

Figure 7.4. Output voltage variation depending on current for the

ACS711EX sensor (from [2])

The electronic schematic of the current transducer can be seen in Figure 5

I T B
[P Vee
y] J2
i 1P+ VIOUT ’ . : .
: ; 10|(Q_L L e
l wlﬁ our
Ip- — S
. ,,i " 0.4pF | $—aw
P~ FRULT
L B

ACST11

Figure 7.5. Electronic schematic of the transducer (from [1, 2])

The transducer will be powered with the voltage VCC =5

Analysis and signal processing. Applications with Arduino 121

Measuring current using the transducer

For a current flowing through the transducer between -15.5 A and 15.5
A, it will provide at the output (at the OUT terminal) a voltage between 0 and
Vce (5V). The voltage is read by the analog port of the Arduino board, and it
provides a digital value (denoted val dig I) in the range of 0 — 1023,
corresponding to a current intensity range between -15.5 A and 15.5 A.

Therefore, when the current intensity is 0, val _dig_I will have the value
512 (we will denote this value as val dig 10). Thus, for positive electric
currents, the range of values will be 512 + 1023 (val_dig 10 + val dig Imax).
It follows that the measurement resolution will be 15.5 A / 512 values,
approximately 0.03 A/value.

To calculate the current intensity, we will refer to the value
corresponding to a current of 1 A, val dig 1A (to be able to later perform
calibration). The LCD shield allows displaying characters on a liquid crystal
display with LED backlighting. It is mounted over the Arduino board and has
connectors in such a way that the board's pins remain accessible. The LCD
screen consists of 2 lines of 16 characters, each character being composed of
5x8 pixels. The columns (characters) are numbered from 0 to 15 (from left to
right), and the rows are numbered from 0 to 1 (from top to bottom). To
function, the shield uses the digital pins of the Arduino board from 2 to 7 as
follows: pin 2 - d7, pin 3 - d6, pin 4 - d5, pin 5 - d4, pin 6 - enable, pin 7 - 1s.

The voltage divider (Figura 7.6) is used to measure the electrical voltage
and is necessary because both the voltage supplied by the laboratory power
supply (35 V) and the maximum operating voltage of the bulb (12 V) exceed
the maximum voltage supported by the analog inputs (5 V) of the Arduino
Uno board.

122 Paper 7

0 - 35V o
R2 U div

0 -5V
o O

Figure 7.6. Voltage divider schematic (from [1])

The power supply will be adjusted so that it cannot provide more than 12
V (by limiting the current supplied to approximately 3 A, necessary for the
bulb to operate at maximum intensity). However, for the protection of the
Arduino board against accidental power supply disturbances, the voltage
divider will be calculated to provide a maximum voltage of 5 V (Vcc) at the
output for a voltage applied to the input terminals of 35 V.

The current absorbed by the analog input is negligible, therefore we can
consider that the currents through R1 and R2 are equal. A small value is
chosen, of the order of mA. For the following calculations, Idiv = 3 mA was

chosen.

R+R—U— 35V = 11,67 kQ (7.1)
LT L 3-10734°0 '

Standard resistors R1 = 10 kQ and R2 = 1.8 kQ are chosen, with a tolerance
of 5%. Due to the tolerance range, the actual values of the resistors can vary
as follows: R1 between 9.5 kQ and 10.5 kQ, R2 between 1.71 kQ and 1.89
kQ. To ensure that the divider will not supply a voltage greater than Vcc on

resistor R2, we recalculate the resistance of R1 for the highest value of R2,
which is 1.89 kQ.

Analysis and signal processing. Applications with Arduino 123

Ugiv-max = Vee = U

7.2
_ (35V - 1,89k — (5V - 1,98kQ) (72)

1%

= 11,34 kQ

Considering the situation where the chosen R has the lowest value, i.e., 9.5
kQ, it is necessary to add an additional resistor to compensate for the difference
of 11.34 kQ - 9.5 kQ = 1.84 kQ. Therefore, the solution is to insert a semi-

adjustable resistor R with a standard value of 2 kQ in series with resistor R1.

Figure 7.7. Final schematic of the voltage divider (from [1])

Measuring voltage using the voltage divider

For a voltage applied to the divider between 0 and 35 V (power
supply), it will provide an output voltage (across resistor R2) between 0 and
Vce (5 V). This voltage is read by the analog port of the Arduino board,
which provides a value (denoted as val dig U) in the range of 0 — 1023.

Thus, the measurement resolution will be 35V / 1024 values = 34.18
mV/value.

The voltage provided by the voltage divider is determined as follows:

124 Paper 7

Vee Uaiv U Vee ~val_dig U
= = .=
1023~ wval_dig_U dw 1023

(7.3)

The voltage applied to the divider (which is desired to be measured) can

also be determined as follows:

U 35 U=l 35 (7.4)
=— = = ,— .
Udiv Vcc dw Vcc

Increasing the measurement resolution of voltage

Each analog input port uses an analog-to-digital converter to
transform the analog voltage read into a digital value. The resolution of the
converter depends on the number of bits used to describe the digital value.
Thus, the Arduino board uses 10 bits, so for a voltage input between 0 — 5
V, it will provide 1024 digital values (between 0 — 1023), with a resolution
of approximately 5 V / 1024 = 4.88 mV/value. To determine the value of
the analog input voltage, it is compared by the converter with a reference
voltage. The value of the reference voltage is equal to Ve, i.e., 5 V. In the
case of the presented application, the maximum voltage that can be measured
is 35 V, but the actual maximum voltage measured cannot exceed 12 V due
to the load. Instead of using the entire range of digital values 0 — 1023 for
voltages between 0 — 5 V, we can use it to describe the range 0 — 1.71 V. This
can be achieved by providing an external reference voltage, which has a value
of 1.71 V. Thus, the measurement resolution becomes 1.71 V /1024 = 1.67
mV/value. An external reference voltage can be applied to the Arduino board
on pin AREF (4nalog REFerence). The voltage can come from an external
power source or from an internal source (3.3 V or 5 V) using a voltage divider
to lower it. Do not use external reference voltages lower than 0 V or higher
than 5 V on pin AREF!

Analysis and signal processing. Applications with Arduino 125

In the case of the presented application, a semi-adjustable resistor
(which can be defined as an adjustable resistive divider) will be used instead
of two fixed resistors to accurately set the reference voltage value using a

measuring device, as shown in Figure 7. 10.

void setup() 1is a function (that does not return data and has no parameters)
that runs only once at the beginning of the program. Here, general program
setup instructions are established (setting pins, activating serial ports, etc.).
void loop() is the main function of the program (that does not return data
and has no parameters) and is executed continuously as long as the board is
operating and not reset.

pinMode(pin, mode) configures the specified digital pin as input or output.
lcd.begin(columns, rows) initializes the interface with the LCD screen and
specifies the number of rows and columns.

Serial.begin(baudrate) sets the data transfer rate for the serial port in bits per
second (BAUD).

if(condition) {instruction(s)} else {instruction(s)} tests whether a
condition is true or not.

for(initialization, condition, increment) {instruction(s)} repeats a block of
instructions until the condition is met.

analogRead(pin) reads the value of the specified analog pin.

delay(ms) pauses the program for a specified duration in milliseconds.
millis() is a function that returns the number of milliseconds elapsed since
the program started execution.

Serial.println(value or variable, number system) prints data as ASCII
characters using the serial port.

led.setCursor(column, row) sets the position of the LCD cursor. For the
LCD used in this application, the number of columns ranges from 0 to 15,

and the number of rows ranges from 0 to 1.

126 Paper 7

lcd.clear() clears the LCD screen and positions the cursor in the upper-left
corner.

led print() displays data (values of variables)/text on the LCD screen within
parentheses. To display text, it must be placed between quotation marks
("text"). To display the value of a variable of type char, byte, int, long, or string,
write the variable name and, optionally, its numbering base (variable, BIN or DEC
or OCT or HEX). To display the value of a variable of type float or double, write
the variable name followed by the number of decimal places to be displayed after
the comma (variable, number of decimals).

analogReference(EXTERNAL) sets the reference voltage used for analog
inputs to be the one provided by an external source.

++ 1s used to increment a variable

4. Application 1. Measuring Voltage and Current Intensity

4.1. Electronic Assembly

Figure 7.8. Schematic diagram for application 1 (from [1, 2, 3])

Analysis and signal processing. Applications with Arduino 127

Traduetor curent
FRULTE=
T
—l- D
CND =
—_— BCL
GOA
RREF o
__35V R GNDT =
k) 8 13-
— DA k0 —| 10REF 1 =
= RESET 1l =
- 3.3V 10
bt 57 -
12V GHDI §
35W § Ri G
= i T b=
@ 10.0k0 f =
el Al 5=
Al {l=
-1 .
Y L
R2 - -
= A5 =
1.8k0
Arduino Uno

Figure 7.9. Electrical connections for application 1 (from [1])

128

Paper 7

Schematic diagram for application 1

The following connections are made:

Place the current sensor on the breadboard by connecting the input
pins for the current to be measured on column d and the output and
power pins on column i;

Place the resistors on the breadboard according to the schematic
diagram;

Connect the negative pin of the bulb with a wire to the "-" rail of the
breadboard;

Connect analog pin Al on the Arduino board with a wire to resistors
R1 and R2;

Connect analog pin A0 on the Arduino board with a wire to the OUT
pin of the current sensor;

Connect the GND (power) pin on the Arduino board with a wire to
the GND pin of the current sensor;

Connect the 5V (power) pin on the Arduino board with a wire to the
Vcce pin of the current sensor;

Connect the GND (power) pin on the Arduino board with a wire to
the “-“ rail of the breadboard..Verify the correct and secure
connection of the 1.8 kQ resistor and the wire (brown in the above
diagram) between the negative side of the bulb and the “-* rail of the
breadboard. Any error in this regard may result in a voltage higher

than 5V on pin Al and may damage the microcontroller.

Analysis and signal processing. Applications with Arduino 129

4.2. Logical Scheme and Code Sequence

Defining an 12C bus

v

Defining a translator

Yy

Defining variables

g

Activation of the serial port

g~

Translator initialization

a

Reading of red color intensity

<

Reading of green color intensity

—

Reading of blue color intensity

g

Calculation of luminous intensity

e

Display of red color intensity

=

Display of green color intensity

*

Display of blue color intensity

!

Display of luminous intensity

y

The next display is delayed by a time t

130 Paper 7

#include <LiquidCrystal.h>

//Including the LCD shield command library

LiquidCrystal 1cd(7, 6, 5, 4, 3, 2);
//Initializing the library and the /cd variable with the pin numbers used by
the LCD shield
const int currentInput = 0;
//Defining the currentlnput variable corresponding to the analog port A0
where the OUT pin of the current sensor will be connected
const int voltagelnput = 1;
//Defining the voltagelnput variable corresponding to the analog port Al
where the output of the resistive divider will be connected
float Udiv = 0.0;

//Defining the voltage supplied by the resistive divider

float I=0.0;

//Defining the electric current variable float U = 0.0;

//Defining the electric voltage variable float E = 0.0;

//Defining the electric energy variable float Etot = 0.0;

//Defining the total electric energy variable float P = 0.0;
//Defining the electric power variable
unsigned long val _dig 1=0;
//Defining the val dig I variable that will contain the value read from the
analog port
unsigned long val dig U =0;
//Defining the val dig U variable that will contain the value read from the
analog port
unsigned long timp = 0;

//Defining the time variable with the initial value 0

float Veec = 5.0;

//Defining the Vcc variable with the initial value 5V

Analysis and signal processing. Applications with Arduino 131

float Uref=5.0;
//Defining the Vref variable with the initial value 5V
float val _dig 10=512;
//Defining the val dig I0 variable corresponding to the initial median value
provided by the current sensor
const int val_dig_1A = 545;
//Defining the val dig 1A variable corresponding to the initial value
provided by the current sensor when a current of 1A flows
void setu(){ led.begin(16, 2);

//Initializing the interface with the LCD screen and specifying the number
of rows and columns
Serial.begin(9600)
//Activate serial port output with a baud rate of 9600 baud
void loop(){
val_dig U = analogRead(voltagelnput);
//The variable val dig U takes the value read from analog port 1
/*for (int i=0;1<500;i++) {
val dig U=val dig U + analogRead(voltagelnput); val dig I = val dig I
+ analogRead(currentInput); delay(1);
b
val dig U=val dig U/500; val dig I=val dig I/500;*/
Udiv = (val_dig U * Uref) / 1023.0;
//Calculate the voltage collected from the terminals of the voltage divider,
depending on the value val dig U read from analog port 1 — formula (6)
U =Udiv * (35 / Vce);
//Calculate the voltage applied to the terminals of the voltage divider
(voltage applied to the bulb) — formula (7)
val dig I = analogRead(currentlnput)

132 Paper 7

//The variable val I takes the value read from analog port 0
I=(val dig I-val dig 10)/(val dig 1A -val dig 10);
//Calculate the current in A, depending on the value val dig 1A
corresponding to a current of 1A — formula (2)
P=U*I
//Calculate the power in W
E = (P * (millis() - timp)) / 3600000;
//Calculate the energy consumed during the last loop
timp = millis();
//Update the time reference Etot = Etot + E;
//Calculate the total consumed energy Serial.printin(val dig I);
//Print the value read from analog port 0 on the serial monitor (necessary for
calibration)
led.clear();
/IClear the LCD screen and position the cursor in the top-left corner
led.print("U=");
//Display the text between the quotation marks on the LCD screen
led.print(U,1);
//Display the value of U on the LCD screen with one decimal place
led.print("V");
//Display the text between the quotation marks on the LCD screen
led.print(" I=");
//Display the text between the quotation marks on the LCD
led.print(1,2);
//Display the value of the variable I on the LCD screen with 2 decimal places
led.print"A");
//Display the text between the quotation marks on the LCD s
led.setCursor(0,1);
//Move the cursor to column 1, row 2 lcd.print("P="); //Display the text

Analysis and signal processing. Applications with Arduino 133

between the quotation marks on the LCD screen
led.print(P,1);
//Display the value of the variable P on the LCD screen with one decimal
place
led.print("W");
//Display the text between the quotation marks on the LCD screen
led.print(" E=");

//Display the text between the quotation marks on the LCD screen
led.print(Etot,2);
//Display the value of the variable Etot on the LCD screen with 2 decimal
places
led.print("Wh");

//Display the text between the quotation marks on the LCD screen
delay(500);

//Delay for 500ms

}

4.3. Operating Mode and Calibration

Step 1

Write the code sequence. Make the electrical connections according to
the diagram in Figure 7.13 and upload the code sequence.

Since the actual values differ from the theoretical ones, it is necessary
to calibrate the electronic measurement circuit, both through modifications in
the software part and in the hardware part:

e The voltages Vce and Uref have a theoretical value of 5 V. The real
voltage will be measured using a voltmeter, and the measured value will

be written in the program when declaring the variables Vcc and Uref.

134

Paper 7

val dig 10 (the digital value corresponding to the current measurement
value of 0) has a theoretical value of 512. With the power supply turned
off (no current through the load), the val dig I variable is displayed on
the serial monitor, and the displayed value will be written in the program
when declaring the val 10 variable.

val dig 1A (the digital value corresponding to the current measurement
value of 1A) has a theoretical value of 545. With the power supply
turned on, gradually increase the power supply voltage until the current
through the load is 1 A. Display the val dig I variable on the serial
monitor, and the displayed value will be written in the program when
declaring the val dig 1A variable.

Rotate the potentiometer RS1 until the voltage displayed on the LCD
matches the voltage displayed by the power supply.

Step 2

Remove the /* and */ characters that mark the following lines as

comments:

for (int 1=0;1<500;1++) {

val dig U=val dig U+ analogRead(voltagelnput); val dig I=val dig I

+ analogRead(currentInput); delay(1);

}

val dig U=val dig U/500;val dig I=val dig 1/500;

and mark the following lines as comments:

//val dig U = analogRead(voltagelnput); /Ival dig 1 =

analogRead(currentInput); //delay(500);

Analysis and signal processing. Applications with Arduino 135

5. Aplication 2. Using an external reference voltage

5.1. Building the electronic setup

Traductor curent

T S5A 2k0

I5W R1 a2
@ 10.0kQ)
- R0 -1
Al 4

—_ AL 1
R2 =i i
1.8k0 " ’

Arduino Uno

TTTTTTTI IIIIIII1II:

Figure 7.10. Schematic diagram for application 2 (from [1])

i

sraws swen

R T

- -
= =
+r

Figure 7.11. Making the electrical connections for application 2
(from [1])

136 Paper 7

The following connections are made:

* The current sensor is placed on the breadboard by connecting the input
pins for the measured current on column d and the output and power pins
on column 1;

* Resistors are placed on the breadboard according to the schematic
diagram;

* The negative pin of the bulb is connected with a wire to the "-" bar of the
breadboard;

* Analog pin Al on the Arduino board is connected with a wire to resistors
R1 and R2;

* The AREF pin on the Arduino board is connected with a wire to the cursor
of the 5 KQ potentiometer.

* The other two pins of the potentiometer are connected with wires to GND
and the 5V pin on the Arduino board.

* The GND (power) pin on the Arduino board is connected with a wire to
the “- bar of the breadboard.

In this application, the current sensor cannot be used because it requires a
reference voltage equal to Vcc.

Verify the correct and secure connection of the 1.8 KQ resistor and the
wire (brown in the above diagram) between the negative side of the bulb
and the “-“ bar of the breadboard.

Any error in this regard may cause a voltage higher than 5 V to appear on pin

Al and may damage the microcontroller.

5.2. Logical scheme and code sequence

Analysis and signal processing. Applications with Arduino 137

#include <LiquidCrystal.h>

//Including the library for LCD commands into the program
LiquidCrystal 1cd(7, 6, 5, 4, 3, 2);
//Initialization of the library and the variable "lcd" with the names of the pins
used by the LCD shield
const int voltagelnput = 1;
//Defining the variable voltagelnput corresponding to analog port A1 where

the resistor divider output will be connected

138 Paper 7

float Udiv = 0.0;
//Defining the voltage supplied by the resistor divider
float U=0.0;
//Defining the electric voltage variable unsigned long val dig U =
0;
//Defining the variable val dig U which will contain the value read from the
analog port
float Vee = 5.0;
//Defining the initial value of Vcc variable as 5V
float Uref=1.71;
//Defining the initial value of Uref variable as 1.71V

void setup(){ lcd.begin(16, 2);

//nitializing the LCD interface and specifying the number of columns and
rows

analogReference(EXTERNAL);

//Using external reference voltage

}

//nitializing the LCD interface and specifying the number of columns
and rows
analogReference(EXTERNAL);

//Using external reference voltage

}

void loop(){
for (int 1=0;1<500;i++) {
val dig U=val dig U + analogRead(voltagelnput); delay(1);

Analysis and signal processing. Applications with Arduino 139

b
val dig U=val dig U/500;
//Calculating the average value of val dig U read from analog portl
Udiv = (val_dig U * Uref) / 1023.0;
//Calculating the voltage obtained from the voltage divider, based on the
value of val dig U
U =Udiv * (35/ Vcc);
//Calculating the voltage applied to the voltage divider (voltage applied to
the bulb)
led.clear();
//Clearing the LCD screen and positioning the cursor in the top left corner

led.print("U=");

//Display the text between the quotation marks on the LCD screen
led.print(U,1);
//Display the value of variable U on the LCD screen, with one decimal place
led.print("V");
//Display the text between the quotation marks on the LCD screen

5.3. Operation Mode and Calibration

The code sequence is written. The electrical connections are made

according to the diagram in Figure 11, and the code sequence is uploaded.

Because real values differ from theoretical ones, it is necessary to
calibrate the measurement electronic circuit, both through modifications in

the software part and in the hardware part:

140 Paper 7

e The Vcc voltage has a theoretical value of 5 V. The actual voltage will be
measured using a voltmeter, and the measured value will be written in the
program when declaring the Vcc variable.

e Using a voltmeter, measure the voltage on the AREF pin. Rotate the

semi-adjustable resistor RS2 until it reaches a value of 1.71 V.

If an external reference is used on the AREF pin, it is mandatory to set
the analog reference to EXTERNAL (using the command
analogReference(EXTERNAL)) in the code sequence before calling
analogRead(). Otherwise, the active reference voltage (internally generated)
and the AREF pin will be short-circuited, potentially damaging the

microcontroller on the Arduino board.

6. Additional Exercises and Conclusions

1. It is observed that the value of the measured current intensity varies
slightly when it is 0 (val_dig_I0), due to the thermal drift of the sensor.
Modify the code sequence so that for the range (val dig 10 -2, val dig 10
+ 2), the value 0 is displayed for the current intensity.

2. What is the effect of the modifications to the code sequence from step 2?

3. The code sequence should be modified so that the displayed voltage

measurement is shown with 4 decimal places.

Calibrating devices or measuring instruments connected to a computer or
development board can be done either through hardware or software.
Calibration is performed using reference devices and instruments (or those
considered as such by the user). For hardware calibration, it is necessary to

modify the parameters defining some electronic components that are part of

Analysis and signal processing. Applications with Arduino 141

the measuring device or instrument. Software calibration involves adjusting
the conversion values in programs that process the acquired data or those
provided by analog inputs (e.g., analog-to-digital converter). The voltage
divider has the advantage of using a simple electrical circuit and a small
number of electronic components. However, it also has disadvantages such as
the presence of a constant operating current, which, to have minimal influence
on the load, must be much larger than the load current connected to the voltage

divider, and the consumption of electrical energy during circuit operation.

BIBLIOGRAPHY

1. Iordache, V., Cormos, A. 2019. Senzori, traductoare si achizitii de date cu
Arduino Uno. Bucuresti: Editura Politehnica Press.

2. *kx 2013, Allegro MicroSystems, LLC. ACS711 Datasheet.
https://www.allegromicro.com/-/media/files/datasheets/acs71 1 -datasheet.pdf

3. *** 2015. Current Sensor Carrier. Pololu Robotics & Electronics:

https://www.pololu.com/product/2452

https://www.pololu.com/product/2452

Paper 8
MEASUREMENT USING A REAL-TIME CLOCK

1. Work Description

1.1. Objectives of the Work

e To create and test medium complexity circuits using external modules.

e Use of electronic shield modules.

e To develop a practical application to display a real-time clock on an LCD
screen.

1.2. Theoretical Description

Introduction

The aim of this application is to understand how to make an electronic
circuit that displays numerically a real time clock on an LCD screen.

For this purpose, a real-time clock module will be used, made with
DS1307 integrated circuit, capable of providing day of the month information,
month, year, day of the week, hour, minutes and seconds, through a serial
communication of type [°C communication using the SCL and SDA data pins

available on the Arduino Uno board [2].

2. Hardware component

Component/module Features Number Picture
of pieces
Arduino Uno 1

Breadboard 82x52x10 mm 1

Analysis and signal processing. Applications with Arduino 143

Component/module Features Number Picture
of pieces
LCD Shield Display on 2 1
rows of 16
characters
Connecting wire Father-Father 1
Real-time clock DS1307 1

In this work, to achieve electronic assembly using external components,
a breadboard test board shall be used.

o abcde fghij -+ -

|

i

E
L

swnns snmaw snnne wnwws *

AR RN RN RRR D
WEEE EEEEE REEEE SREEE EREES
H

FEEtEsaiasEuddEon-aoaun.

FEEBRRRERRAREERRRERRRRNRN NS -

-+ - abecde fghij -+ -

Figure 8.1. Breadboard and internal connections (from [2])

144 Paper 8

LCD Shield allows characters to be displayed on a liquid crystal display
with LED illumination. It mounts over the Arduino board and has connectors
so that the board pins will still be accessible.

The LCD screen consists of 2 lines of 16 characters each character is
composed of 5x8 pixels. The shield uses the digital pins of the Arduino board
from 2 to 7. The real-time clock provides information such as the day of the
month, the month, year, day of the week, hour, minutes and seconds. It is made
with a circuit integrated circuit DS1307 [3] and uses an oscillating circuit based
on crystal oscillator with an output signal of data signal via an 12C serial
connection. The time format can be set between 12 hours per bit for AM/PM
or 24 hours, and the number of days of months and leap year correction is done
automatically. For the day of the week the clock provides digits from 0 to 6
which corresponding to Sunday to Saturday.

The real-time clock module also contains two 4.7 kQ resistors connected
between each of the SCL, SDA and VCC data pins, acting as pull-up resistors
to 1. When an I°C bus is shared by several modules, each having a set of pull-
up resistors at 1, only one set will be kept, by removing the float on the jumper

circled in green.

Figure 8.2. Using pull-up resistors (from [1, 2])

Analysis and signal processing. Applications with Arduino 145

The SQW pin generates, when activated, a rectangular signal with a
frequency that can be chosen from four values.

Since the I?C bus is used, the Wire'’s library, already available in the pre-
installed library package in the Arduino IDE, will have to be included in the
code sequence.

The real-time clock module will be powered by VCC =5 V.

Writing real-time clock data

Since there is no way to automatically synchronize the clock with an
external clock, the correct setting of the clock data is done manually by the
user.

In the case of the real-time clock, a library will no longer be used. library.
The data will be written directly to the internal clock registers using functions
specific to the use of the I2C bus, the steps are as follows:

- Activate the 12C bus for writing by specifying the address of the clock.

- Set the address of the first register where the write will start data.

- Writing data in registers. They will first be converted from decimal to
BCD format.

- Closing the I?C bus for writing.

Remarks:

- If bit 8 of the 00h register is set to 1 the oscillator is disabled (the clock
stops running) in order to minimize the current consumed (clock data must
be updated when used again).

- If bit 7 of register 02h is set to 0, the hours are displayed in 24-hour format.

- If bit 7 of register 02h is set to 1, the hours are displayed in 12-hour format,
bit 6 providing in this case the information AM (value 0) or PM (value 1).

146

Paper 8

The content of the internal data storage registers is presented in the

following table:
Addres | Bit 8 B:;' Bit6 | Bit5 34“ B;' Bit 2| Bit 1| Function | Domain
s
00h CH Ten Seconds Second Units Second 00-59
01h 0 Ten Minute Units Minute Minute 00-59
1-12
12 | PM/AM
+AM/PM
02h | 0 T Ten Units Hour Tim
78 I . 00-23
S Hou
Hou r
T
B3h | o |of o 0o |o Units Day Day [9107
week week
04h 0 0 Tens Day Units Day Month Day 01-31
Month Month
Ten .
05h 0 0 0 . Units Moon Moon 01-12
Moo
n
06h Ten Units Year An 00-99
Year
07h 0UT| 0 | 0 | SQWE | 0 | 0 |RSl | RS0 | Control -
08h- RAM
3Fh 56x8 00h-FFh

CONVERSION OF DATA FROM DECIMAL TO BCD

BCD coding assigns each digit in the decimal system (0, 1,9) to a four-

bit binary code (0000, 0001,1001). If a number in decimal system has n digits,

BCD coding will give it a consisting of n * 4 bits (e.g. the number 19 in decimal
is written as 0001 1001 in BCD).
The watch's internal registers store 8-bit BCD-coded data, i.e. by

decoding it we get a decimal number consisting of two digits (the of tens and

units).

The Arduino board takes the data to be written to the clock registers in

decimal (as written by the user) and transmits it in binary code, without

knowing that the clock will interpret it as BCD.

Analysis and signal processing. Applications with Arduino 147

Thus, after example above, the number 19 (0001 1101 in BCD) will be
transmitted in binary as 0001 0011 and will mean for the clock 13. Therefore,
before being transmitted, the data must be converted from decimal to BCD.

The transformation from decimal to BCD is done in the code sequence
and involves the following operations:

* Divide the initial number by 10. Dividing two numbers gives the result
without subtraction, i.e. the number of tens (19 /10 =1, i.e. 0000 0001).
Then translate the bits of the result by 4 positions to the left (code 0000
0001 will become 0000 0001 0000) by which basically preserves the four
bits representing the digit the digit of the decimal point, and are brought
to the decimal point in BCD format).

* Perform the modulo operation (return the remainder of the division of
two integers) between the original number and 10 (19 % 10 = 9), the
result is the number of units in the original number (0000 1001).

* Operating a logical OR between the two results will result in the code
0001 1001, i.e. 19 in BCD.

Reading clock data in real time

Data will be read directly from the internal registers of the watch using
functions specific to the use of the I>C bus, the steps are as follows:

- Activate the 12C bus for writing, mentioning the address of the clock.

- Set the address of the first register from which reading will start the
data.

- Close the 12C bus for writing.

- Activate the 12C bus for reading.

- Read data from registers and assign them to variables. Thanks to the
fact that the data is stored in registers in BCD (decimal coded binary), they will

first be converted to decimal format.

148 Paper 8

When the 12-hour format is chosen, from the byte byte corresponding to
the hour, bits 1...5 are extracted containing the time information and bit 6

containing the AM or PM information.

Converting data from BCD to decimal

The Arduino board receives each byte of data by interpreting it as a
classical number using all 8 bits, not knowing that they are actually BCD
encoded. So the combination 0001 1001 will mean 25 in decimal (and not 19
as it should be).

The conversion from BCD to decimal is done in the code sequence and
involves the following operations:

* Translating the bits of the 4-position data byte to the right (the code 0001
1001 will become 0000 0001; it will basically keep the four bits
representing the tens digit) and multiplying by 10 (the final result will be
1-10=10).

* Operation of a logical AND between the data byte and a byte with value
0000 1111 (0001 1001 & 0000 1111 = 0000 1001 = 9; the four bits
representing the digit of the units are preserved).

* Add the results of the above operations (10 +9 = 19).

3. Software component

is the library containing the commands for the LCD SHIELD.

is the library containing the commands for the 12C bus.
creates a variable specifying the digital pins used to control the

LCD shield.

Analysis and signal processing. Applications with Arduino 149

has the meaning of a constant modifying the behavior of a variable. The
variable will become read-only i.e. its value will not be able to be changed.
sets a value for a variable of type 16-bit integer variable
with sign (-32.768 to 32.767).
variable sets an unsigned byte variable.
is a function (which returns no data and has no parameters) that
runs once at the start of the program. This sets the general instructions for
setting up the program (setting pins, enabling serial ports, etc.).
is the main function of the program (which does not return data
and has no parameters) and is executed continuously as long as the board is
running and not reset.
tests whether a
condition is met.
is a function that initializes the 12C bus.
is a function that sets the register from
which to start the data read operation.
is a function that opens the I 2C in data read
mode (a number of n registers) from the specified address.
is a function that reads data register by register and provides the
result.
initializes the interface to the LCD screen and
specifies the number of rows and columns.
sets the position of the LCD cursor. For the LCD
used in this application the number of columns is 0 to 15, and the rows from 0

to 1.

150 Paper 8

displays data (values of some variables)/text in brackets. To display

a text it is necessary that it must be enclosed in quotation marks (“text”).

To display the value of a char, byte, int, long, or string variable, write the
variable name and, optionally, its numbering base (variable, BIN or DEC or
OCT or HEX). To display the value of a float or double variable type write the
variable name and after the decimal point, sets the data

transfer rate for the serial port in bits/second (BAUD).

prints the text as ASCII characters using the serial port,
adding a newline after it. The return value is used to terminate the execution
of a function and to return a value. delay(ms) pauses the program for a duration
of time specified in milliseconds.
is an operator that moves the bits of the variable by n positions
to the right.
is an operator that moves the bits of the variable by a number of
n positions to the left.
is the logical AND operator.
is the logical OR operator.
is the modulo operator that calculates and gives the remainder of the division
between two integers.
is the division operator which, when dividing two numbers gives the result
without remainder.

means equal to.

Analysis and signal processing. Applications with Arduino 151

4. Application

4.1. Electronic Assembly

SCL p—o
SDA |—
AREF |—
GND3 |—
13 —
— IOREF 12
RTC Module — RESET 11 —
- 3.3V 10 j—
5V s5v 9 |—
— GND1 8 |—
GND GNDZ
— Vin T F—
SQW [— 6 I—
— A0 5 |—
SCL — Al 4 |
— AZ 3 -
SDA — — a3 > =
— a4 1 =
— A5 0 }—
Arduino Uno

Figure 8.3. Principle diagram (from [1, 2])

S aln i M

2 wlafe w1 T

=3 wlaje =z 120

- - = = o - -
g Helnja ="
wlmle = s

o wlee ez |

- - - -9 - -
- = m

o == ==mw | 5"
- o ow

- L op el

eel MEmEmaa aemma= vall f
- w1

""" Gemmss eme=s= w ==

- - = = =16 ey

Sl yessses Sessss= 1w bl

e - wwmia | 5"

- - - o w9 e

e =mwww2 |22

o = mm2 5"
- om2z

- - - - = =T il

"*"| diemmesm smmmam A e

e = wwzs |

o] temmeee eamma= Tl Bei=

rrflo =mwwmz |20
- omE

et =mamz |20
----- ES]

-+ - abcdae f@gnh i -+ —

Figure 8.4. Electrical connections (from [1, 2])

152 Paper 8

4.2. Logic diagram and code sequence

Writing (setting) real-time clock data

Define variable

|

Master Initiation I* C

Serial port initialization

:

Start transmission I* C

e

Set register pointer

Transform to BCD and write data

b

2
End of transmission | C

-w

i

Show confirmation

Code sequence

#include < Wire.h>
//include I2C bus command library in program

const int ADDRESS CEAS = 0x68;

Analysis and signal processing. Applications with Arduino 153

//defining the variable corresponding to the clockaddress
int second = 10;

//defining variables corresponding to clock data

Int minute = 29;

int now = 4;

void setup(){

Wire. begin();

//nitialisation of the 12C bus

Serial. begin(9600);

//lenables serial port output at 9600 baud rate

Wire. beginTransmission(address CEAS);

//open the 12C bus in data transmission mode to the specified address

Wire. write(byte(0x00));

//set the register where the data write operation will start.
Wire.write(ZecinBCD(second));

//write seconds value after conversion from decimal to BCD

Wire. write(ZecinBCD(minute));

//write minute value, after conversion from decimal to BCD Wire.
write(ZecinBCD(hour));

//write hour value after conversion from decimal to BCD - for 24-hour format
//Wire.write(ZecinBCD(hour) | 0b1100000);

//write hour value, after conversion from decimal to BCD - for 12-hour
format, set bit 6 to 1 for PM (or 0 for AM) and set bit 7 to 1

Wire. write(ZecinBCD(weekday));

//write weekday value after conversion from decimal to BCD

Wire. write(ZecinBCD(dayMonth));

154 Paper 8

/Iwrite day month value after conversion from decimal to BCD Wire.
write(ZecinBCD(month));

//write month value, after conversion from decimal to BCD Wire.
write(ZecinBCD(year));

/Iwrite year value after conversion from decimal to BCD Wire.
endTransmission();

//end data transmission

b

void loop(){

//the content of the loop loop is to inform about the completion of the clock
update procedure

Serial. println("The clock has been updated");

//scratch the text between quotes on the serial monitor delay(10000);

//delay 10 seconds

b

byte ZecinBCD(byte value) {

return (((value/10)<<4) | (value%10));

//data conversion function from decimal to BCD - formula (1)

b

Real-time clock data reading

#include < Wire.h>

//including the I2C bus command library in the program const int
ADDRESS CEAS = 0x68;

//defining the variable corresponding to the clock address

int second, minute, hour, dayWeek, dayMonth, month, year;

//defining variables for the data provided by the clock

Analysis and signal processing. Applications with Arduino 155

//byte AMPM;
#include < LiquidCrystal.h>

//include command library in theprogram

LCrlled()

//initialize the library

//initialize 12C busled
led.begin(16, 2);
/initialize the LCD interface and specify the number of rows andcolumns of
the LCD screen
h

void loop(){ Wire. beginTransmission(CEAS_ADDRESS);
//open the 12C bus in data transmission mode to the specified addressWire.
write(byte(0x00));
/lset the register where the data read operation will start.
Wire.endTransmission();
//end data transmission
Wire. requestFrom(ADDRESS CEAS, 7);
//open the 12C bus in data read mode (from 7 registers) from thespecified
address
second = BCDinZec(Wire. read());
//read value seconds, conversion from BCD to decimal and variableallocation
minute = BCDinZec(Wire. read());
//reading minute value and conversion from BCD to decimal and variable
allocation

hour = BCDinZec(Wire. read());

156 Paper 8

//read hour value and conversion from BCD to decimal and variableallocation
//time = Wire.read();

//read value hour

//AMPM = time & 0b100000;

//retain bit 6 of hour value (if 0 then it is AM)

//time = BCDinZec(time & 0b11111);

//save bits 1...5 of hour value (actual time data) and update hourvariable
dayWeek = BCDinZec(Wire. read());

//read weekday value and conversion from BCD to decimal and variable
allocation

dayMonth = BCDinZec(Wire. read());

//read day month value and conversion from BCD to decimal andvariable
allocation

Month = BCDinZec(Wire. read());

//month value reading and conversion from BCD to decimal and variable
allocation

year = BCDinZec(Wire. read());

/lyear value reading and conversion from BCD to decimal and variable
allocation

led. clear();

//deleting LCD screen content.

lcd.prtdayMoon);

///displays on the LCD screen the value of the variable dayMonth

led. prat("-");

///displays on the LCD screen the text in quotes lcd. prnt(month);

///displays on the LCD screen the value of the variable month.

led.print("-");

Analysis and signal processing. Applications with Arduino 157

///displays on the LCD screen the text in quotes lcd. print(year + 2000);
///displays on the LCD screen the value of the variable an
led. setCursor(0, 1);
//move cursor to column 1, row 2
lcd. print(time);
///displays the value of the time variable on the LCD screen.
led.print(":");
///displays on the LCD screen the text in quotes
led.print(minute);
///displays on the LCD screen the value of thevariable minute
led. print(":");
///displays on the LCD screen the text in quotes
led.print(second);

///displays on the LCD screen the value of the second variabl
//if (AMPM == 0) {

//if AMPM =0 AM is displayed, otherwise PM is displayed

/Ned.print("AM")

/I'} 1] else {

/led.print("PM")
/'}
delay(1000);
//delay 1 second }
byte BCDinZec(byte value) {
return (((value>>4)*10) + (value&Obl111));

//data conversion function from BCD to decimal - formula (2)

}

158 Paper 8

ADDITIONAL EXERCISES AND CONCLUSIONS

1. Change the code sequence so that months, hours, minutes or seconds from
0 to 9 are displayed as 00, 01, ... 09.

2. Modify the code sequence so that the day of the week is alsodisplayed
on the screen in abbreviated form (Mon, Tue, Wed, etc.).

3. Write a program that provides a timer function - displaying a predefined
message when the user reaches a preset time.

4. Write a program to perform certain read or write operations to the ports of
the development board at certain points in time (to simulatethe timing
clock used in the operation of automatic traffic andtraffic light

installations).

The clock or clock signal is very important in the synchronization of
electronic circuits or in the sequential approach to the steps of an industrial
process (in the case of transport, traffic management can be considered as
such a process). Transmissions between the different components of a system
can be synchronous or asynchronous. Synchronous transmissions are made by
the use of a common clock by all equipment transmitting data within a system.
Asynchronous transmissions are made by including timing information in the
transmitted messages or data (in particular for defining the bit range).

Synchronization of the different components of a traffic management
system can be done by using clock signals from Global Navigation Satellite
Systems (GNSS), such as GPS, or by use of a dedicated clock channel.
Synchronization is very important together with maintaining a common time
reference for all synchronized equipment (time t = 0). The clock signal is also
important in the development of equipment based on digital integrated circuits,

as it has the role of both synchronizing all existing circuits and ensuring a

sequential approach to the program or logic implemented in the equipment.

Analysis and signal processing. Applications with Arduino 159

BIBLIOGRAPHY

1. lordache, V., Cormos, A. 2019. Senzori, traductoare si achizitii de date
cu Arduino Uno. Bucuresti: Editura Politehnica Press.

2. *** 2008. Arduino Reference. Bitshift Operators.
https://www.arduino.cc/en/ Reference/Bitshift.

3. **#* 2008. Maxim Integrated. DS1307, 12C Real-Time Clock — Datasheet.

https://www.microcrystal.com/en/products/real-time-clock-rtc-modules/

https://www.arduino.cc/en/%20Reference/Bitshift.
https://www.microcrystal.com/en/products/real-time-clock-rtc-modules/

	Content-Rox
	PREFACE-Rox
	1_Introduction
	2_Paper-2
	3_Paper-3
	2. Hardware Components
	3. Software components

	4_Paper-4
	5_Paper-5
	6_Paper-6
	7_Paper-7-BUN
	8_Paper-8
	Writing (setting) real-time clock data

