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Cuvânt înainte 
 
 
 

Lucrarea se adresează cu precădere studenților din anul II ai facultăților 
cu profil mecanic sau înrudit cu acesta. Acest volum vine în continuarea primului 
volum și conține un număr de șapte capitole: tensiuni la solicitarea compusă a 
barelor drepte, bare curbe plane, calculul deformațiilor grinzilor drepte, metode 
energetice de calcul a deformațiilor grinzilor drepte, sisteme static 
nedeterminate, stabilitatea statică a barelor drepte zvelte, solicitări dinamice. 

Lucrare cuprinde aspecte teoretice de bază, unele dintre acestea fiind 
însoțite de aplicații numerice. 
 Conținutul volumului se bazează pe cursurile predate și tipărite, de-a 
lungul anilor, în facultățile cu profil ingineresc din țara noastră. De aceea, multe 
abordări sunt asemănătoare, multe aspecte fiind comune cursurilor de 
Rezistența materialelor predate în cadrul forstei Catedre de Rezistența 
materialelor de la Facultatea de Inginerie mecanică din cadrul Universității 
Transilvania din Brașov. 

Cartea, în ansamblul ei, se dorește a fi un omagiu adus colectivului 
catedrei de Rezistența materialelor, care de-a lungul a peste 70 de ani de 
activitate au dezvoltat această disciplină la Brașov și care, prin tot ceea ce au 
realizat, au scris o pagină de istorie în dezvoltarea științelor inginerești. 
 Mulțumesc tuturor tuturor profesorilor cu care am colaborat în 
activitatea mea, din Brașov și din țară, și care au contribuit la formarea mea în 
domeniul rezistenței materialelor. 
 Dedic această carte studenților mei pentru a le fi imbold în însușirea 
disciplinei și în formarea lor ca viitori ingineri. 
 
Brașov, decembrie 2025 
 
Prof.dr.ing. Ioan Călin ROȘCA  
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TENSIUNI LA 
SOLICITAREA 
COMPUSĂ A BARELOR 
DREPTE 

1 
 

 

 

 

1.1. Considerații generale 
 

 În cazul în care în secțiunile transversale ale barelor există o singură 
componentă a eforturilor secționale se spune că barele sunt supuse la 
solicitări simple (tracțiune-compresiune, forfecare, torsiune, încovoiere). 
Dacă, din contră, în secțiunile transversale există mai multe componente 
ale eforturilor secționale bara este supusă la solicitări compuse. 

 Problema principală care apare în cazul solicitărilor compuse este 
aceea a determinării tensiunii echivalente ech . Astfel, există următoarele 

două situații generale: 

a) În cazul în care, în secțiunea transversală există eforturi 
secționale de aceași natură (întindere-compresiune cu 
încovoiere sau forfecare cu torsiune) tensiunile care apar sunt 
de acceași natură (tensiuni normale   sau tensiuni tangențiale 
 ) tensiune rezultantă fiind obținută prin însumarea algebrică a 
acestora (aplicarea principiului suprapunerii de efecte); 

b) În cazul în care în secțiunile transversale apar, în același timp, 
tensiuni de natură diferită, normale   și tangențiale  , atunci 
tensiunea rezultantă (echivalentă) se determină pe baza 
teoriilor de rezistență. 

Problemele se rezolvă pornind de la condiția de rezistență: 

 

ech a  ,    (1.1) 
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unde tensiunea echivalentă ech  se determină prin una din variantele mai 

sus menționate și se compară cu tensiunea admisibilă a  corespunzătoare 

unei stări limită. 

 

1.2. Solicitarea de tracțiune-compresiune cu 
încovoiere (solicitări   ) 

 

1.2.1. Considerații generale 

 

În cazul solicitărilor de tracțiune-compresiune și de încovoieree 
apar aceleași tipuri de tensiuni: tensiuni normale  . Tensiunile normale se 
calculează conform relațiilor: 

a) în cazul solicitării de tracțiune-compresiune 
N

A
   , cu semnul 

(+) tentru tracțiune și semnul (-) pentru compresiune; 

b) în cazul solicitării de încovoiere iz
îz

z

M
y

I
   , pentru cazul în 

care momentul este pe direcția spațială Oz  și iy

îy

y

M
z

I
   , 

pentru cazul în care momentul este pe direcția spațială Oy . 

Cele două tensiuni fiind de aceași natură, se mai spune că solicitarea 
compusă este de tip   . În cele ce urmează se prezintă două cazuri, des 

întâlnite în practică, de solicitare compusă de tip   . 

 

1.2.2. Grindă încărcată cu forță înclinată 

 

Se consideră o bară încărcată cu forță F  înclinată, cu un unghi  , 
care este aplicată într-un plan principal central de inerție (figura 1.1). 

Grinda se consideră a fi dreaptă, de secțiune constantă și ca urmare 
aria acesteia ( A) și momentul de inerție axial ( zI ) sunt constante. 

Din diagramele de eforturi secționale rezultă existența unei 
solicitări de compresiune și a unei solicitări de încovoiere.  

Tensiunile normale rezultante din aceste solicitări se calculează 
conform relațiilor  cunoscute de la solicitările simple: 
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 solicitarea de tracțiune: 

    

cos
t

N F

A A





      (1.1) 

 

 solicitarea de încovoiere:  

 

siniz
i

z z

M Fab
y y

I I





    .  (1.2)  

 
 

Figura 1.1 

 

Tensiunile date de relațiile (1.1) și (1.2) sunt de acceași natură și, ca 
urmare, valoarea rezultantă se obține prin însumarea lor: 

 

1,2
iz

z

MN
y

A I
   ,    (1.3) 

valoarea maximă fiind: 
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    iz

z

MN
y

A I
   .    (1.4) 

 

 Ca urmare a acțiunii forței axiale axa neutră nu va mai trece prin 
centrul de greutate. Determinarea poziției axei neutre se face prin egalarea 
valorii tensiunii dată de relația (1.4) cu zero: 

     

0iz

z

MN
y

A I
  ,    (1.5) 

 

de unde rezultă poziția axei neutre (figura 1.2):   

 

2z
an z

i

IN N
y i

M A A
    ,   (1.6) 

unde zi  este raza de inerție: 

      
A

I
i z

z  .    (1.7) 

 

 

Figura 1.2 

  

Pe baza relațiilor de mai sus, rezultă că axa neutră intersectează 
secțiune transversală dacă este îndeplinită condiția: 
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,max ,i t c  ,   (1.8) 

 

adică, tensiunea maximă rezultată din solicitarea de încovoiere este mai 
mare ca cea rezultată din solicitarea de trecțiune-compresiune. 

 

1.2.3. Compresiunea excentrică a barelor de înălțime mică 

 

Se consideră bară de secțiune constantă asupra căreia acționează o 
forță F  poziționată într-un punct P  diferit de centrul de greutate        
(figura 1.3,a). Sistemul de coordonate se consideră a fi format din axele 
principale de inerție Gy  și Gz  (figura 1.3,a și b). 

Cotele punctului P  sunt Py  și Pz  (figura 1.3,b). Ca urmare a acțiunii 

forței în punctul indicat, neglijând greutatea proprie a stâlpului, într-o 
secțiune transversală se vor dezvolta următoarele eforturi secționale: 

 o forță axială: 

N F ; 

 un moment de încovoiere orientat de-a lungul axei Gy : 

   iy PM F z  ; 

 un moment de încovoiere orientat de-a lungul axei Gz :  

iz PM F y  . 

Se consideră un punct oarecare B  de coordonate  ,B By z , în 

cadranul pozitiv (primul cadran – figura 1.3,b). 

Ca umare a celor trei eforturi secționale, în punctul C  se vor 
dezvolta trei tensiuni normale   ca urmare a trei solicitări: 

 compresiune: 

c

F

A
  ;   (1.9) 

 încovoiere datorată momentului de încovoiere orientat de-a 
lungul axei Gy : 

iy P
iy B B

y y

M F z
z z

I I



    ;  (1.10) 

 un moment de încovoiere orientat de-a lungul axei Gz : 
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iz P
iz B B

z y

M F y
y y

I I



    .  (1.11) 

 

 
a) 

 
b) 

Figura 1.3 

  

În primul cadran, tensiunile dezvoltate de la compresiune și 
încovoiere au, toate, efect de compresiune. Ca urmare, pe baza relațiilor 
(1.9) ÷ (1.11) tensiunea normală totală dezvoltată în punctul B  este: 

 

P P
B c iy iz B B

y y

F z F yF
z y

A I I
   

 
        . (1.12) 

 

 Relația (1.12) poate fi rescrisă, ținând cont și de relația (1.7), sub 
forma: 

 

2 2
1 P B P B

B

z y

y y z zF

A i i


 
    

 

.  (1.13) 

 

 Se pune problema determinării poziției (coordonatelor) axei neutre. 
Pentru aceasta se consideră că punctul B  este situat pe axa neutră ( 0)B   

și ca urmare, din (1.13), rezultă ecuația: 
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01
22


y

BP

z

BP

i

zz

i

yy
.   (1.14) 

 

 Din relația (1.14) rezultă că axa neutră este o dreaptă a cărei puncte 
de intersecție a celor două axe de coordonate sunt determinate prin 
considerarea, succesivă, a valorilor 0By   și 0Bz  : 

 
2

. .

2

. .

0 ;

0 .

y

B B a n

P

z
B B a n

P

i
y z z

z

i
z y y

y


    





    



 (1.15) 

 

 Așa cum rezultă, axa neutră împarte secțiunea transversală în două 
părți în care se dezvoltă tensiuni normale pozitive și tensiuni normale 
negative (figura 1.3,b). 

 Pe baza relațiilor (1.14) și (1.15) pot fi concluzionate următoarele: 

a) valoarea tensiunii normale   dintr-un punct oarecare este 
proporțională cu distanța de la punctul respectiv la axa netră; 

b) în cazul în care axa neutră nu intersectează suprafața secțiunii, 
atunci tensiunea normală este de compresiune pe întreaga 
sprafață a secțiunii; 

c) axa neutră trece prin cadranul opus celui în care se află aplicată 
forța; 

d) în cazul în care nu este considerată greutatea proprie a stâlpului, 
poziția axei neutre depinde numai de coordonatele punctului de 
aplicare a forței (1.15); 

e) axa neutră se îndepărtează de centrul de greutate al secțiunii 
atunci când forța de compresiune se aproprie de acesta și invers; 

f) dacă forța aplicată se deplasează pe o axă care trece prin centru 
de greutate, atunci axa neutră se deplasează paralel cu ea însăși; 

g) dacă axa neutră se deplasează de-a lungul uneia dintre axele 
principale de inerție, atunci axa neutră se deplasează paralel cu 
cealaltă axă principală de inerție; 

h) tensiunea produsă într-un punct oarecare B , ca urmare a 
aplicării unei forțe de compresiune într-un punct P  este egală cu 
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tensiunea produsă în punctul P  dacă forța este aplicată în 
punctul B ; 

i) dacă forța F  este aplicată într-un punct oarecare de pe axa 
neutră rezultă că în punctul P  tensiunea este egală cu zero; 

 

Exemplul 1.1 

Se consideră stâlpul din figura 1.4 încărcat cu forțele 1 3F F , 2 6F F  

și 3 8F F . Cunoscându-se faptul că materialul din care este confecționat 

stâlpul are 120a MPa   și cota 40a mm  se cer: 

a)  să se determine forța capabilă capF  din condiția de rezistență 

max a  ; 

b) să se traseze axa neutră. 

 

Rezolvare: 

a) Pentru început, se determină încărcările date de cele trei forțe care 
acționează asupra stâlpului. Se analizează fiecare forță, în parte, conform 
tabelulului 1.1 

 

Tabelul1.1 

Forța N  iyM  izM  

1F  3F  
1 3 3 3 9F a F a Fa     1 2 3 2 6F a F a Fa      

2F  0  
2 10 6 10 60F a F a Fa      0  

3F  8F  0  0  

  11F  54Fa  6Fa  

 

Tensiunile care apar sunt: 

2 2

11 11
0,458

24
c

F F F

A a a
       

2 2

54
2,25

4 (6 )

6

iy

iy

y

M Fa F

a aW a
      


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2 2

6
0,375

6 (4 )

6

iz
iz

z

M Fa F

a aW a
      


 

 

 
a) 

 

 

y 

z 
- 

0,458F/a2 

+ 

- 
0,375F/a2 

+ 
- 2,25F/a2 

0,375F/a2 

2,25F/a2 

   

 

   

 

K 
zK 

y K
 

+ 

- 
-3,083 F/a2 

2,167 F/a2 

 
b) 

Figura 1.4 
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Tensiunile normale în cele 8 puncte considerate în figura 1.4,b sunt: 

Punctul : 1 2 2 2 2
0,458 0,375 2,25 2,167

F F F F

a a a a
       

Punctul : 2 2 2 2
0,458 0,375 0,083

F F F

a a a
       

Punctul : 3 2 2 2 2
0,458 0,375 2,25 2,333

F F F F

a a a a
        

Punctul : 4 2 2 2
0,458 2,25 2,708

F F F

a a a
       

Punctul : 5 2 2 2 2
0,458 0,375 2,25 3,083

F F F F

a a a a
        

Punctul : 6 2 2 2
0,458 0,375 0,833

F F F

a a a
       

Punctul : 7 2 2 2 2
0,458 0,375 2,25 1,417

F F F F

a a a a
       

Punctul : 8 2 2 2
0,458 2,25 1,792

F F F

a a a
      

Din analiza tensiunilor de mai sus, rezultă că cea mai mare tensiune, 

în valuare absolută este tensiunea 5 . 

Punând condiția de rezistență: 

5 a   rezultă 
2

3,083 a

F

a
  

Înlocuind valorile numerice: 120a MPa   și cota 40a mm  se 

obține: 
2 2120 40

62.277( )
3,083 3,083

a
cap

a
F N

  
    

 
b) pentru determinarea poziției axei neutre se consideră, în primul cadran 
al secțiunii, un punct oarexare K  de coordonate Ky  și Kz  (figura 1.4,b). 

Tensiunea totală în punctul K  este formată din: 

 tensiunea normală de compresiune:  
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2 2

11 11
0,458

24
c

F F F

A a a
       

 

 tensiunea normală datorată încovoierii pe direcția Oy : 

 

3 3

54
0,75

4 (6 )

12

iy

iy K K K

y

M Fa F
z z z

a aI a
   


 

 

 tensiunea normală datorată încovoierii pe direcția Oz : 

 

3 3

6
0,1875

6 (4 )

12

iz
iz K K K

z

M Fa F
y y y

a aI a
      


 

 

Ca urmare, tensiunea totală este: 

 

2 3 3
0,458 0,75 0,1875K

F F F

a a a
     . 

 

Punându-se condiția ca punctul K  să fie situat pe axa neutră, 
rezultă condiția: 

2 3 3
0,458 0,75 0,1875 0K K K

F F F
z y

a a a
       

sau: 

  
1 1

0,458 0,75 0,1875 0K Kz y
a a

    . 

 

Pentru trasarea axei neutre se consideră în ecuația de mai sus, pe 
rând (Figura 1.4,b): 

1
0 0,458 0,1875 0 2,442K K Kz y y a

a
         

1
0 0,458 0,75 0 0,61K K Ky z z a

a
        
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Exemplul 1.2 

Se considerăgrinda din figura 1.5 îcărcată cu o forță distribuită, de 

intensitate 
F

q
a

  și o forță concentrată F . 

Considerând: 1a m  și 30F kN  se cere să se verifice grinda, la 

solicitarea compusă de întindere/compresiune cu încovoiere, pentru o 
valoare a tensiunii admisibile a materialului grinzii 140a MPa  . Secțiunea 

grinzii este de formă pătrată cu latura 200b mm . 

 

 

T 

Mi 

B 

  

A 

YB 
x 

 

YA 

 + 

- 

+ 

+ 

 

+ 

0,5ql 
F 

q 

+ 

0,5ql 

- 

3,125a 

- 

F 

a
 

4a a 3a 

XA 
 

- 

- 

0,5ql 

N 

x 

x 

 

3,125F 

- 0,875F 

4,822Fa 
3,625Fa 

2,625Fa 

Fa 

+ 

 
 

Figura 1.5 

 

Rezolvare: 

Pentru calculul de verificare este necesară trasarea diagramelor pentru 
evidențierea locului în care are loc solicitarea cea mai mare. Ca urmare, se 
determină reacțiunile AX  , AY  și BY : 

a) calculul reacțiunilor: 

0 ; 0AX X F   , de unde rezultă: AX F  

0 ; 8 4 6 0B AM Y a q a a Fa        sau 8 25 0AY a Fa   ,  

de unde rezultă: 3,125AY F  
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0 ; 8 4 2 0A BM Y a Fa q a a        sau 8 7 0BY a Fa     

de unde rezultă: 0,875BY F  

Verificare: 4 3,125 4 0,875 0A BY Y q a Y F F F         

 

b) Diagrama de forțe axiale: 2A AN X F

    ; 2 0B AN X F


     

 

c) diagrama de forțe tăietoare 

 

1

1

0 3,125 ;
3,125

4 0,875 .

A

A A

x T FF
T Y qx F x

a x a T F


 
     

 
 

 

1 0 3,125AT x a

    

 

1 0,875BT F

   

 

d) diagrama de momente încovoietoare: 

 

,2 2

, 1

,1

0 0

3,125 3,125 4,822
2 2

4 4,5

i A

i A A i

i

x M
x Fx

M Y x q Fx x a M Fa
a

x a M Fa



 


      
  

 

 

,1 2 (4 ) 4 (2 ) 3,125 (4 ) 4 (2 ) 4,5 0,875i AM Y a x qa a x F a x F a x Fa Fx

         

 

,1

,1 2

,2

0 4,5
4,5 0,875

3,625

i

i

i

x M Fa
M Fa Fx

x a M Fa


 
   

 

 

 

,3

,3 2

,2

0 0i

i

i

x M
M Fx

x a M Fa


 
  

 
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,

, 2

2

0 0
0,875

3 2,625

i B

i B B

x M
M Y x Fx

x a M Fa


 
   

 
 

 

Din diagramele de eforturi secționale rezultă că cel mai solicitat 
punct este punctul în care momentul încpvoietor este cel mai mare. În acest 
punct avem urmîtoarele tensiuni normale: 

 de compresiune: 
4

2

3 10
0,75

200
c

N F
MPa

A A



         

 de încovoiere: 

 
4 3

3 3 3

4,822 28,932 28,932 3 10 10
108,495

200

6

iz
iz

z

M Fa Fa
MPa

bW b


  
         

 Distribuția tensiunilor este prezentată în figura 1.6. Din această 
distribuție rezultă că tensiunea maximă este în fibra b b , unde ambele 

tensiuni normale, de la compresiune și de la încovoiere sunt negative: 

 

total

z

N Miz

A W
     

max 109,245 aMPa     

 

y 

z 

- 

108,495 MPa - 

0,375F/a2 

b b 

c c 

 

 

 
 

K 

zK 

y K
 

+ 

0,75 MPa 

+ 

- 

+ 

- 

108,495 MPa 

 
 

Figura 1.6 
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Pentru determinarea poziție axei neuteră se consideră punctual K  
și se calculează tensiunea din acest punct: 

4,822
K K

z

F Fa
y

A I
     

și se pune condiția ca acest punct să fie situat pe axa neutră: 0K  , adică 

 
4 3

4

4,822 3 10 10
0,75 0,75 1,08495 0 0,691

200

12

K K K Ky y y
  

         

 

1.2.4. Sâmburele central 

 

Din relația (1.13) a tensiunilor normale     și pe baza figurii 1.3,b se 
poate afirma că, în funcție de poziția punctului de aplicare a forței 
excentrice de compresiune F , tensiunile din secțiune vor fi de semne 
diferite numai dacă axa neutră traversează secțiunea având același semn 
dacă axa neutră este în afara secțiunii. 

Ținând cont de faptul că poziția axei neutre depinde de punctul de 
aplicare al forței de compresiune F , se pune problema precizării zonei 
cuprinsă în secțiunea transversală în care se poate aplica forța transversală 
astfel încât tensiunea normală   să aibă același semn. 

Prin definiție, domeniul din secțiune din jurul centrului de greutate al 
acesteia, în interiorul căruia poate fi aplicată o forță normală excentrică, 
astfel încât tensiunile nirmale   să aibă același semn pe întreaga secțiune, 
se numește sâmbure central. 

În cazul în care, punctul de aplicație B  , de coordonate  ,B By z , al 

forței F , se află în interiorul sâmburelui central, atunci axa neutră este 
poziționată în afara secțiunii. Limita dintre poziționarea axei neutre în 
suprafața secțiunii transversale și spațiul din afara acesteia îl reprezintă 
conturul secțiunii.  

Ca urmare, când axa neutră va fi tangentă la conturul secțiunii 
transversate, punctul de aplicație al forței se va situa pe limita domeniului 
sâmburelui central. 

Se consideră o secțiune oarecare la care se consideră poziția axei 
neutre ca fiind tangentă la contur (figura 1.7). 
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Considerându-se o anumită poziție tangentă a axei neutre (a.n.) la 
contur, poziția punctului P , de aplicare al forței F , de coordonate 

 ,P Py z , va fi determinat pe baza relațiilor (1.15): 

2

. .

2

. .

;

.

y

P

a n

z
P

a n

i
z

z

i
y

y


 





 



             (1.16) 

    

 

Figura 1.7 

 

Din relațiile (1.16) se poate observa faptul că, în cazul în care 
secțiunea transversală are forma unui poligon, atunci și sâmburele central 
va avea o formă de poligon. În cazul secțiunilor transversale curbe și 
sâmburele central va avea formă curbă. În continuare sunt prezentate 
metodele de determinare a sâmburelui central pentru o serie de secțiuni 
transversale uzuale. 

 

a) Determinarea sâmburelui central pentru o secțiune transversală 
dreptunghiulară 

 

Se consideră o secțiune transversală dreptunghiulară de cote b h  

(lățime   înălțime) (figura 1.8).  
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Axele tangente la contur coincid, practic, cu laturile dreptunghiului 
rezultând 4 axe neutre. Considarând axa neutră 1 1n n , tăieturile pe axe 

sunt: . .
2

a n

h
y    și . .a nz   . 

 

h
 

b 

h
/6

 

b/6 

z 

y 

(n1) (n1) 

(n2) 

(n2) 

G 

 
Figura 1.8 

 

Ca urmare, pe baza relațiilor (1.16), punctul de aplicație al forței 
este: 

2

1

. .

2 2

1

. .

;
6

0.

z
P

a n

y y

P

a n

i h
y

y

i i
z

z


   





    
 

 

 

 Pentru axa neutră 2 2n n  , pe baza aceluiași raționament, dar cu 

valorile . .a ny    și . .
2

a n

b
z   rezultă cotele: 

2 2

2

. .

2

1

. .

0 ;

.
6

z z
P

a n

y

P

a n

i i
y

y

i b
z

z


    





   



 

 

Pentru celelate laturi se repetă calculul rezultând un romb 
prezentat în figura 1.8. 
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b) Determinarea sâmburelui central pentru o secțiune transversală 
circulară 

 

Se consideră o secțiune transversală dcirculară de rază R         
(figura 1.9).  Secțiunea fiind simetrică se consideră un singur caz, tangența 
axei neutre la cerc într-un singur punct. 

 
Figura 1.9 

 

Plecând de la relațiile (1.16), considerând . .a ny R , rezultă: 

 
2 4

2
. . 4 4

z
P

a n

i R R
y

y R R




      

 

Sâmburele central va fi un cerc cu raza egală cu 
4

R
. 

 

1.3. Solicitarea cu tensiuni tangențiale (solicitări de 
tip   ) 

 

1.3.1. Considerații generale 
 

 Acest caz implică fie combinarea solicitărilor de forfecare ca urmare 
a acțiunii forțelor de forfecare pe cele două direcții, fie combinarea 
solicitării de forfecare cu solicitarea de torsiune. În ambele situații 
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tensiunea rezultantă este tot o tensiune tangențială  . Ceea ce este 
important de menționat, este faptul că, în general nivelul tensiunii 
tangențiale determinată de acțiunea unui moment de torsiune este mai 
mare comparativ cu tensiunea tangențială determinată de acțiunea forțelor 
tăietăare. 

 

1.3.2. Tensiuni tangențiale datorate numai acțiunii forțelor 
tăietoare 

 

 Se consideră secțiunea din figura 1.10 în care, în centrul de greutate 
acționează două forțe tăietoare yT  și zT . Pornind de la relația lui Juravski, 

tensiunile tangențiale corespunzătoare celor două forțe de forfecare, 
dezvoltate în punctul P , sunt: 

 

,

,

;

.

y z

xy P

z z

z y

xz P

y y

T S

b I

T S

h I










 



  (1.17) 

 

unde zb  este lățimea secțiunii în dreptul punctului P , pe direcția Gz , iar yh  

este lățimea secțiunii în dreptul punctului P , pe direcția Gy .  

 

 

Figura 1.10 
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Pe baza relațiilor (1.17) tensiunea tangențială totală în punctul 
considerat P  este: 

 

2 2
,tot P xy xz    .   (1.18)  

 

1.3.3. Solicitarea compusă de torsiune cu forfecare. Calculul 
arcurilor elicoidale cu spire strânse 

 

Unul din elementele cel mai des utilizate în structurile mecanice îl 
reprezintă arcurile elicoidale cu spire strânse. Principala acțiune a acestora 
este atenuare a deformațiilor și ca urmare ele au capacitatea de a 
înmagazina de energie potențială de deformație. Prin acțiunea pe care o au 
forțele asupra lor, ele sunt comprimate sau întinse.  

Se consideră arcul elicoidal din figura 1.11 asupra căruia acționează 
centric (de-a lungul axei arcului) o forță F . Arcurile elicoidale se defines 
prin diametrul de înfășurare al spirelor 2D R , diametrul sârmei din care 

sunt realizate spirele arcului d , numărul de spire active n  și unghiul de 
înfășurare al arcului  .  

În cazul în care, unghiul de înfășurarea este mai mic de 10 , atunci 
arcul elicoidal se spune că este cu spire strânse. Calculul arcurilor se 
reduce la determinarea solicitărilor care apar în secțiunea transversală a 
spirelor.  

 

 

R
 

d
 

F F 



 
 

Figura 1.11 
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Pentru acest calcul, se reduce forța F  în centrul de greutate al 
secțiunii transversal (figura 1.12).  

 

 

F 

d 

F 

Mt 

N 

T Mi 



M 



 
Figura 1.12 

 

Această forță se descompune în două componente: 

 o componentă care este perpendiculară pe secțiunea transversal 
a spirei și care determină apariția forței axiale: 

 

sinN F  ;   (1.19) 

 

 o componentă situate în planul secțiunii transversale a spirei și 
care determină apariția forței tăietoare: 

 

cosT F  ;   (1.20) 

 

În același timp, forța F  determină apariția în spira arcului a unui 
moment egal cu: 

 

2

D
M F F R  ,  (1.21) 

 

care se descompune în următoarele două componente: 
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 momentul încovoietor, conţinut în planul secţiunii:  

 

siniM M  ;   (1.22) 

 

 momentul de torsiune, perpendicular pe planul secţiunii:  

 

costM M  .   (1.23) 

Avâdu-se în vedere valoarea mica a ungiului   ( 10  ) se pot face 

aproximările sin 0   și cos 1   și, ca urmare, rezultă că principalele 

eforturi secționale sunt: 

 forța tăietoare: 

    cosT F F  ;  (1.24) 

 momentul de torsiune:  

costM M  .   (1.25) 

Ținând cont de relația de calcul a tensiunii tangețiale maxime de 
forfecare maxf  dată de relația lui Juravski și de relația de calcul a tensiunii 

tangențiale maxime din cazul torsiunii maxt , tensiunea totală în spira 

arcului va fi egală cu: 

 

max max maxtot f t   
.  

(1.26) 

 

 Înlocuind expresiile ariei 
2

4

d
A


  și ale modulului 

3

16
p

d
W


 , și 

ținând cont că momentul de torsiune este 
2

t
F D

M    rezultă: 

 

2 3 2 2 2

4 4 16 16 16 16 1

3 2 3 3
tot

F F D F F R F R

dd d d d d


    

 
      

 
,(1.27) 

 

unde, prin R  s-a notat raza de înfășurare a spirei  2R D . 

 Distribuția tensiunii tangențiale la suprafața transversal a spirei 
este prezentată în figura 1.13, unde s-au făcut notațiile: ,maxf  - tensiunea 
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tangențială maximă la forfecare și ,maxt  - tensiunea tangențială maximă la 

torsiune. 

 

 
Mt 

T 

t,max 

t,max 

f,max  
 

Figura 1.13 

 

Condiţia de rezistenţă a spirei arcului se exprimă prin relaţia: 

 

max max maxtot f t a      . (1.28) 

  

În practică, se consideră că influența efortului dat de forța tăietoare 
este mult mai mică comparativ cu efectul momentului de torsiune și, ca 
urmare, relația de calcul folosită în calculul de rezistență este condiția de 
rezistență de la torsiunea barelor drepte de secțiune circulară: 

 

max

max 3

16t

a

p

M F R

W d
 


   .  (1.29) 

 

 În practică, relația (1.29) este corectată printr-un coefficient de 
corecție ak  care tine cont de de influenţa forfecării cât şi de o serie de alţi 

factori care nu sunt luaţi în considerare, precum: încovoierea, deformaţiile 
longitudinale etc.  

Valoarea coeficientului ak  este stabilită în funcție de raportul dintre 

raza de înfășurare a spirei R și raza secțiunii circulare a spirei r  ( R r ) 

(tabelul 1.2). 
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Tabelul 1.2. 

R/r 3 4 5 6 7 8 9 10 

ak  1,58 1,40 1,31 1,25 1,21 1,18 1,16 1,14 

 

Din relația de mai sus rezultă diametrul necesar al sîrmei spirei 
arcului: 

 

3
16

a

F R
d


 .   (1.30) 

 

Valoarea coeficientului k este cu atât mai mare cu cât raportul R r  

( r  – raza sârmei arcului, 2r d ) este mai mic, adică cu cât arcul este mai 

rigid din punct de vedere geometric. 

 

1.4. Solicitarea cu tensiuni tangențiale (solicitări de 
tip   ) 

 

1.4.1. Considerații generale 
 

 Solicitările compuse de tip    reprezintă cea mai mare parte a 

solicitărilor întâlnite în tehnică. În acest caz pot să apară combinații între 
solicitări simple care generează tensiuni normale   
(întindere/compresiune și/sau încovoiere) cu solicitări care generează 
tensiuni tangențiale   (forfecare și/sau torsiune).  

În cazul acestor solicitări se determină o tensiune echivalentă ech  

care se compară cu tensiunea admisibilă a . Tensiunea echivalentă ech  se 

determină pe baza teoriilor de rezistență, cele mai folosite fiind teoriile III 
și V. 

 

1.4.2. Cazul unei bare de secțiune circulară încastrată 

 

Se consideră bara din figura 1.14, de secțiune circular de diametru 
d  încărcată cu forțele 1 2 10F F F  , 3 20F F . Materialul din care este 
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confecționată bara are tensiunea admisibilă la rupere a . Cotele 

geometrice sunt prezentate în figura 1.14.  

 

 

F1 

F2 

F3 

5d 

5d 

d/4 

d
/4

 

 

 

 

z 

y 

O 

x 

 
 

 

Figura 1.14 

 

Se cer:  

a) să se traseze diagramele de variație a forței axiale N  și de variație a 
momentelor de încovoiere iM  și de torsiune tM ; 

b) să se determine forța capabilă capF  din condiția de rezistență 

,maxech a  , folosind ipoteza a III-ia de rupere (se va neglija efectul 

de forfecare). 

 

Rezolvare: 

a) - forța axială este constantă între punctele  și  fiind egală cu:  

 

13 1 2 10 20 30N F F F F F      
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- momentul încovoietor are următoarele componente: 

 de la  la  forța 1F  generează momente atât după direcția Oy  cât 

și după direcția Oz . Ambele momente sunt constant și egale în 
modul cu:  

1 10 2,5
4 4

iy iz
d d

M M F F Fd      . 

Ținând cont de sensurile positive ale axelor Oy  și Oz  se poate 

constata că ambele sunt negative. 

 de la  la , ca urmare a acțiunii forței 3F  apare un moment 

încovoietor suplimentar, orientat pe direcția Oz , în sens negativ. 
Momentul suplimentar este variabil având valoarea 2 0izM   în 

punctual  și 3 3 5 10 5 50izM F d F d Fd     , fiind negativ ca sens. 

Ca urmare, în punctul  momentul total încovoietor după direcția 
Oz  este: 2, 2,5iz totM Fd  , iar în punctul  este: 

3, 2,5 50 52,5iz totM Fd Fd Fd     . 

- momentul de torsiune tM  se manifestă numai între punctele  și  fiind 

determinat de forța 3F  și  este constant: 3 10 5
2 2

t

d d
M F F Fd     . 

Momentul rotește în sensul pozitiv al axei Ox . 

Diagramele sunt prezentate în figura 1.15. 

 

b) calculul tensiunii echivalente se face pornind de la solicitările simple 
maxime rezultate din diagramele din figura 1.15. 

În cazul solicitărilor de tracțiune tensiunea maxima este de: 

 

2 2

30 4
38,197t

N F F

A d d





    

 

În cazul solicitărilor de încovoiere avem memente care se dezvoltă 
după ambele direcții Oy  și Oz . Ca urmare, se calculează un moment 

încovoietor echivalent:  

 

2 2 2 252,5 2,5 58,75i iy izM M M Fd Fd     . 
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N 

+ 

+ 

30F 

Miy Mt 

2,5Fd 5Fd 

 
Figura 1.15 

 

Tensiunea normal echivalentă, rezultată din solicitarea de 
încovoiere, va fi:  

 

, 3 2

58,75 32
598,422i

i ech

z

M Fd F

W d d





   . 

 

Tensiunea normal totală va fi:  

 

 , 2 2
58,75 598,422 657,172tot t i ech

F F

d d
       . 

 

În cazul torsiunii tensiunea dezvoltată este una tangențială calculate 
cu relația:  

 

3 2

5 16
25,464t

p

M Fd F

W d d





   . 
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Aplicând ipoteza a III-ia de rupere, tensiunea echivalentă este: 

 

4 2 2 2

2 2
4 657,172 4 25,464 659,142ech

F F

d d
         

 

Din condiția de rezistență ( ,maxech a  ) vom obține: 

,max 2
659,142ech a a

F

d
      din care rezultă   20,00151 aF d . 

 

1.4.3. Arbori drepți 
 

Se consideră arborele din figura 1.16 pe care sunt montate două roți 
de curea în punctele  și . Arborele este „rezemat” pe două lagăre de 
rostogolire, în punctele A și B. Se cunosc următoarele date:  

 Distanța 100a mm ; 

 Puterea motorului care antrenează arborele 15P kW ; 

 Diametrele 1 500D mm  și  2 300D mm  ; 

 Turația motorului 1000 minn rot ; 

 Tensiunea admisibilă a materialului din care este confecționat 
arborele 140a MPa  . 

Se cere să se determine diametrul minim al arborelui d  astfel încât 
arborele să nu se rupă. Se va folosi ipoteza a III-ia de rupere. 

 

Rezolvare: 

Pentru rezolvare se parcurg următoarele etape: 

Etapa 1 – se determină momentul de torsiune transmis la arbore.  

Deoarece puterea este dată în kW  formula de calcul a momentului 
de torsiune este: 

 

[ ] 15
9,55 9,55 0,14325[ ] 143.250 [ ]

[ / min] 1000
t

P kW
M kNm Nmm

n rot
       

 

Etapa 2 – determinarea valorilor forțelor 1S  și 2S  din curele. 
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Determinarea se face pornind de la calculul momentului de torsiune 
pentru fiecare roată în parte. 
 

a 4a 3a 

45° 

 

 

2S2 

B 

S2 

z 

y 

D1 

D2 

3S1 

S1 

A 

d 

z 

y 

Figura 1.16 

 

Roata   

1 1
1 1 1 13

2 2
t

D D
M S S S D   . 

  

 Înlocuind valoarea momentului de torsiune tM  și pe cea a 

diametrului 1D  rezultă pentru forța 1S  valoarea:  

 

     1 1143.250 500 286,5Nmm S mm S N     

 

Roata  

2 2 2 2
2 22

2 2 2
t

D D S D
M S S   . 

  

Înlocuind valoarea momentului de torsiune tM  și pe cea a diametrului 2D  

rezultă pentru forța 2S  valoarea:  

 

     2 2143.250 150 955,0Nmm S mm S N     
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Etapa 3 – se determină rezultantele forțelor din curele. 

 Așa cum rezultă din direcțiile curelelor, forțele 1S  vor aaveaa o 

rezultantă 1 1 1 13 4R S S S    care va acționa de-a lungul axei Oy  

(figura 1.17) , în sensul negativ ala cesteia, în punctul . 

 Forțele 2S  vor da o rezultantă 2 2 2 22 3R S S S    care face cu axa Oz  un 

unghi de 45° (figura 1.17), în punctul . 

Rezultanta 2R  făcând un unghi de 45° cu axa Oz  va avea două proiecții: 

 

 

45° 

2S2 

S2 

z 

y 

3S1 

S1 

R1 = 4S1 

R2 = 3S2 

 
Figura 1.17 

 

 Pe axa Oy :     
45sin22 RR y   

 Pe axa Oz :     
45cos22 RR z   

Observație: 

 Componenta 2 yR  este îndreptată în sensul pozitiv al axei Oy  iar 

componenta 2zR  este orientată în sensul negativ al axei Oz . 

 

Etapa 4 – se determină schema de încărcare a arborelui și se trasează 
diagramele. 
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Pentru această etapă se consideră arborele ca o grindă rezemată în 
punctele în care sunt rulmenții și se figurează, în  și , proiecțiile forțelor 
rezultante 1R  și 2R , pe cele două axe (direcții) Oy  și Oz  (figura 1.18). 

Pentru reprezentarea corectă a direcțiilor de acțiunea forțelor de-a 
lungul celor două axe se consideră, arbitrar un sens pozitiv (v. Figura 1.15 
– direcția „Oy” pozitivă și direcția „Oz” pozitivă – stânga figurii). 

 

a 4a 3a 
y 

R1 

z 

  

 A  B 

R2y 

Miz 

Miy 

 
Mt 

YA 
Miz1 

MizB 

ZA 
Miy1 

MiyB 

  

 A  B 

R2z 

 

Figura 1.18 

 

 Diagrama de momente de încovoiere după direcția „Oz ” 

Proiecțiile forțelor pe direcția „Oy” generează momentele de încovoiere   
de-a lungul axei „Oz”. Pentru început se determină reacțiunile din punctele 
A  și B : 

 

1 2

1 2

0 5 4 3 0

4 3 4 1146 3 2865 0,707
2132,133 [ ]

5 5

B A y

y

A

M Y a R a R a

R R
Y N

       

     
  


 

Reacțiune din punctul B  este orientată în sus și are valoarea  
3011,688 [ ]BY N . 

Valorile de moment în punctele  și B  vor fi:  

 
6

1 2132,133 100 0,2132133 10 [ ]iz AM Y a Nmm       
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6
2 3 2865 0,707 300 0,6076665 10 [ ]izB yM R a Nmm        

 

 Diagrama de momente de încovoiere după direcția „Oy ” 

Proiecțiile forțelor pe direcția „Oz” generează momentele de 
încovoiere de-a lungul axei „Oy”. Pentru început se determină reacțiunile 
din punctele A  și B . 

2

2

3 3 2865 0,707
0 5 3 0 1215,333[ ]

5 5

y

B A y A

R
M Z a R a Z N

 
          

 

Reacțiune din punctul B  este orientată în jos și are valoarea  
3240,888 [ ]BZ N . 

Valorile de moment în punctele  și B  vor fi:  

 
6

2 3 2865 0,707 300 0,6076665 10 [ ]iyB zM R a Nmm        

 

Pentru determinarea de încovoiere după direcția „Oy ” se determină 

prin asemănare: 

 

1

5iyB

iy

M a

M a
 , de unde rezultă: 6

1 0,1215333 10 [ ]
5

iyB

iy

M
M Nmm    

 

Momentul de torsiune este constant ca valoare și se manifestă între 
cele două roți de curea:  

 
60,14325 10 [ ]tM Nmm  . 

 

Etapa 5 – determinarea tensiunii echivalente. 

Conform ipotezei a III-ia tensiunea echivalentă este: 

 

2 24ech     
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Tensiunea normală   este determinată de solicitarea de încovoiere 

și, ca urmare, va fi dată de relația: i

z

M

W
  , unde zW  este modulul de 

rezistență la încovoiere. 

Observație:  

 Fiind o secțiune circulară tensiune poate fi calculată și în funcție de yW  

deoarece 
3

32
y z

d
W W


  . 

Tensiunea tangențială   este determinată de solicitarea de torsiune 

fiind calculată cu relația t

p

M

W
  , unde pW  este modulul de rezistență la 

torsiune și se calculează cu relația 
3

16
p

d
W


 . 

Comparând relațiile de calcul ale celor două module rezultă că: 
2p zW W . Ca urmare, tensiunea echivalentă va fi: 

 

22

2 2 2 2

3

1 32
4 ti

ech i t i t

z p z

MM
M M M M

W W W d




  
         

   

 

 

În continuare este necesară determinarea valorilor maxime ale 
momentelui de încovoiere și de torsiune. 

Analizând cazul momentelor de încovoiere se constată că valorile 
extreme sunt în punctele  și B . 

În punctul  momentul încovoietor rezultant va fi egal cu: 

 

 2 2 6 2 2 6
1 1 1 10 0,12115333 0,2132133 0,245230586 10i iy izM M M Nmm     

 

În punctul B  momentul încovoietor rezultant va fi egal cu: 

 

 2 2 6 2 2 610 0,6076665 0,6076665 0,859370205 10iB iyB izBM M M Nmm     

 

Comparând valorile momentului din punctele  și B  rezultă că 
mometul de încovoiere cel mai mare este în punctul B : 
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 60,859370205 10iBM Nmm  . 

 

Etapa 6 – Calculul diametrului. 

Considerând valorile maxime ale momentelor de încovoiere și 
torsiune și punând condiția de rezistență: 

 

ech a   

se obține: 

 
6

2 2

3

32 10
0,859370205 0,14325 140ech

d





   , 

 

de unde rezultă: 

39,872d mm  

 

1.4.4. Calculul pârghiilor drepte spațiale 

 

Un caz aparte îl reprezintă pârghiile drepte spațiale, care sunt 
pârghii folosite în diferite sisteme și dispozitive. Ca urmare a sistemelor de 
legătură acestea sunt încărcate de diferite forțe și ca urmare a faptului că 
sunt spațiale apar toate cele patru forme de solicitari simple. Calculul 
implică determinarea forțelor și a momentelor, calculul realizându-se în 
punctul de încastrare deoarece față de încastrare brațele forțelor fotrțelor 
fiind cele mai mari. 

Pentru exemplificare se consideră pârghia din figura 1.19 care are o 
secțiune dreptunghiulară. 

Se consideră că asupra pârghiei acționează trei forțe: 1 1000F N , 

2 500F N  și 3 1500F N , iar materialul din care este confecționată pârghia 

are tensiunea admisibilă 120a MPa  .  

Se pune problema dacă pîrghia rezistă sau nu în încastrare. În 
vederea determinării stării de tensiune se determină componentele 
eforturilor din încastrare. 

Se analizează fiecare încărcare din încastrare ținând cont de următoarele 
reguli: 
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 Dacă forțele sunt îndreptate în sensul negativ al axelor Ox , Oy  și 

Oz , atunci acestea se consideră a fi pozitive; 

 Dacă momentele sunt îndreptate în sensul pozitiv al axelor 
acestea se consideră pozitive. 

 

 

 

915 

615 

30 915 

6
0

 

F3 
F2 

F1 

z 

y 

O 

 
Figura 1.19 

 

Pornind de la sistemul de axe, din încastrare, din figura 1.19 se 
definește următorul tabel: 

 

Forța N  yT  zT  iyM  izM  tM  

1F  0 1000  0 0 
1(915 15)F   1(615 15)F   

2F  0 0 500  
2(915 15)F   0 0 

3F  1500  0 0 
3 15F   3 30F


  0 

Total 1500  1000  500  60,4725 10  60,855 10   60,6 10  

 

În continuare, ținând cont de relațiile de calcul ale tensiunilor, se 
determină valorile acestora și se calculează tensiunile echivalente în 
diferite puncte ale secțiunii (figura 1.20). 
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 Tensiunile normale   

- tracține/compresiune: 
1500

0,833
30 60

c MPa    


 

- încovoiere după direcția Oz :  

 
6

2

0,855 10
47,5

30 60

6

iz
iz

z

M
MPa

W



     


 

- încovoiere după direcția Oy :  

 
6

2

0,4725 10
52,5

30 60

6

iz
iy

z

M
MPa

W



     



 

 Tensiunile tangențiale   

- forfecare după direcția  Oz   (relația lui Juravski): 

 

3 3 500
0,416

2 2 30 60
z

xz

T
MPa

A
   


 

 

- forfecare după direcția  Oy   (relația lui Juravski): 

 

3 3 1000
0,832

2 2 30 60

y

xy

T
MPa

A
   


 

 

- tensiunile tangențiale   reuzultate din forfecare se trec paralele cu axele 
de-a lungul cărora acționează forțele (se simbolizează direcția de acțiune a 
tensiunii care este identică cu cea a forței rezultante) 

- torsiune – fiind secțiune dreptunghiulară calculul tensiunilorse face cu 
următoarele relații: 

 

 Tensiunea maximă: max 2
1

t t

t

M M

W k hb
   , 
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unde 1 0,246k   este un coeficient care se găsește sub formă tabelară și este 

determinat în funcție de raportul h b , iar latura b  este latura cea mai mică 

(tabelul 1.3). 

Ca urmare: 

   
6

max 2

0,6 10
45,167

0,246 60 30
MPa


 

 
 

 

și se manifestă pe latura cea mai mare. 

 Tensiunea de pe latura mică se calculează cu relația: 

2 2 max 0,79 45,167 35,682k MPa       

 

Tabelul 1.3 

Raportul h b  Coeficientul k  Coeficientul 1k  Coeficientul 2k  

1 0,141 0,208 1,00 

1,2 0,166 0,219 0,93 

1,5 0,196 0,231 0,859 

1,75 0,214 0,239 0,820 

2 0,229 0,246 0,79 

2,5 0,249 0,258 0,77 

3 0,263 0,267 0,766 

4 0,281 0,282 0,745 

 

Calculul tensiunilor rezultante: 

Observație:  

- în colțurile secțiunii există NUMAI tensiuni normale  . Tensiunile din 
colțirile secțiunii 

1 0,833 47,50 52,5 5,833c iz iy MPa             

2 0,833 47,50 52,5 99,167c iz iy MPa            

3 0,833 47,50 52,5 4,167c iz iy MPa            

4 0,833 47,50 52,5 100,833c iz iy MPa             
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Tensiunile din mijlocul laturilor 

- Punctul  

5 0,833 47,5 46,667c iz MPa         

5 2 35,682 0,416 35,266xz MPa        

 

tensiunea echivalentă este: 

  

2 2
,5 5 54 84,572ech MPa      

 

 c 

- 
+ 

- 

iz 

+ 

- 

iy 

xy 

xz 

1 

2 

1 

y 

z 

Mt 

2 

 

  

  

 

 

 

 

 

Figura 1.20 

 

Punctul  

6 0,833 52,5 51,667c iy MPa         

6 1 45,167 0,832 45,999xy MPa        

tensiunea echivalentă este: 

 

2 2
,6 6 64 105,513ech MPa      
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Punctul  

7 0,833 47,5 48,333c iz MPa          

7 2 35,682 0,416 36,098xz MPa        

tensiunea echivalentă este: 

 

2 2
,7 7 74 86,881ech MPa      

Punctul  

8 0,833 52,5 53,333c iy MPa          

8 1 45,167 0,832 44,335xy MPa        

tensiunea echivalentă este: 

 

2 2
,8 8 84 103,473ech MPa      

 

Analizând tensiunile din cele 8 puncte, rezultă că tensiunea cea mai 
mare este în punctul  ,6 105,513 120ech aMPa MPa    . 
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BARE CURBE PLANE 

2 
 

 

 

 

 

2.1. Generalități  
 

Barele curbe sunt bare care au axa curbă fie în plan, fie în spațiu. 
Exemple clasice de bare curbe plane sunt cârligele montate la dispozitivele și 
instalațiile de ridicat, piese inelare sau zalele unui lanț (figura 2.1). 

 

F 

F 

F 

F 

F F 

 
Figura 2.1 

 

Studiul se face ținând cont de următoarele condiții: 

a) Forțele exterioare acționează în planul care conține axa barei; 

b) Secțiunea transversală a barei are o axă de simetrie iar planul axei 
barei este plan de simetrie pentru bară. 

Pe baza raportului dintre grosimea secțiunii transversale „ h ” și raza de 
curbură „ R ” se disting două tipuri de bare curbe: 

a) în cazul în care raportul 5...6R h    bara are curbură mică; 

b) în cazul în care raportul 5...6R h    bara are curbură mare. 
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 Ținând cont de condițiile mai sus menționate, se poate afirma faptul că 
deformația unei bare curbe are un caracter plan, axa barei fiind și după 
deformare o curbă plană.  

La calculul barelor curbe, cu secțiune plină, se admite că urmare a 
deformării modificarea secțiunii transversale este neglijabilă. 

 

2.2. Bare curbe plane de curbură mică 
 

Se consideră bara curbă plană din figura 2.2 asupra căreia acționează 
un set de încărcări exterioare (forțe și/sau momente) notate la modul general 

cu iF   1,i q .  

 



F1 

Fq 

N T 

Mi 

O  
 

h 

Fi 

F2 

R 

Figura 11.2 

 
Așa cum se cunoaște, ca urmare a acțiunii încărcărilor complexe 

exterioare coplanare, în orice secțiune transversală se vor dezvolta forțe axiale 
N , forțe tăietoare T  și momente încovoietoare iM . 

În cazul acestui tip de bare se aplică calculul clasic de rezistență, astfel 
încât tensiunile care apar vor fi: 

a) tensiunea normală  , dată de solicitarea simplă de 
tracțiune/compresiune: 

 

N

A
     (2.1) 

 

unde A  este valoarea secțiunii transversale; 

b) tensiunea tangențială   dezvoltată de forța tăietoare T  calculate cu 
relația lui Juravski: 
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z

z

T S

bI
      (2.2) 

 

c) tensiunea normală i  generată de momentul încovoietor iM , 

calculată cu relația lui Navier: 

 

i
i

z

M
y

I
  .                     (2.3) 

 

2.3. Bare curbe plane de curbură mare 
 

În acest caz avem de a face cu bare curbe la care raza de curbură este 
mică iar calculul tensiunii normale, datorată încovoierii, se calculează cu 
relația lui Winkler (Emile Winkler). Ca și în cazul încovoierii plane pure, 
trebuie făcute următoarele observații: 

 Fibra situată în axa neutră nu-șI modifică lungimea. Axa neutră 
împarte secțiunea transversală în două părți: una în care tensiunea 
normală   este pozitivă (apare fenomenul de întindere al fibrelor) 
și o a doua parte în care tensiunea normală este negativă (apare 
fenomenul de compresiune a fibrelor); 

 În cazul barelor curbe axa neutră nu coincide cu axa longitudinală 
(a centrelor de greutate) și, ca urmare, poziția axei neuter trebuie 
determinată. 

Se consideră bara curbă plană din figura 2.3 la care se fac următoarele 
notații: 

 1R  - raza interioară – raza de la centrul de curbură C  la fibra 

interioară; 

 2R  - raza exterioară – raza de la centrul de curbură C  la fibra 

exterioară; 

 R  - distanța de la centrul de curbură C  la axa centrelor de greutate 
G  (a.c.g.); 

 r  - distanța de la centrul de curbură C  la axa neutră (a.n); 

   - raza de curbură a fibrei considerate la distanța y  față de axa 

neutră; 

 e  - distanța de la axa centrelor de greutate la axa neutral; 

 1y  - distanța de la axa neutral la fibra interioară; 
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 2y  - distanța de la axa neutral la fibra exterioară. 

 

 a 

Mi Mi 

b 

c 
d 

b’ 

c’ 

C 

R2 

R1 

R 

r 



e 

y 

a.c.g. 

a.n. 

y2 y1 



d

fibra la distanta y de 
axa neutră (a.n.) 

 
Figura 2.3 

 

Se consideră un segment situate la distanța y  față de axa neutră. 

Segmentul, în faza inițială când nu este aplicat momentul de încovoiere iM , 

are o lungine aproximată cu: 

 

ds    .    (2.4) 

 

 Alungirea segmentului inițial ds , urmare a rotirii și pe baza ipotezei lui 
Bernoulli, poate fi aproximată cu relația: 

 

ds y d       (2.5) 
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 Considerând relația geometrică (figura 2.2): 

 

y r  ,    (2.6) 

 

și ținând cont că pentru materialul considerat legea lui Hooke este valabilă, 
alungirea segmentului de lungime ds  considerat inițial este, pe baza relațiilor 
(2.4), (2.5) și (2.6), egală cu: 

 

ds y d r d

ds

  


   

  
      .  (2.7) 

 

 Pe baza legii lui Hooke și a relației (2.7) tensiunea normal   este: 

 

r d d y
E E E

r y

  
 

  


     


.  (2.8) 

 

Trebuie făcute o serie de observații: 

 din relația (2.8) rezultă faptul că variația tensiunii normale   în 
secțiunea transversal este dată de o funcție hiperbolică; 

 cea mai mare apare în fibrele situate la extremele secțiunii; 

 axa neutră, unde tensiunea este nulă  0   este poziționată la 

cotele  r  sau 0y . 

Determinarea tensiunii normale se face pornind de la relațiile de 
echivalență: 

 

0 ;

,

A

i

A

dA

ydA M





 









   (2.9) 

 

Considerând relația (2.8) și introducând-o în ambele relații de 
echivalență (2.9) se obțin noile forme: 
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 
2

0 ;

.

A

i

A

d r
E dA

rd
E dA M

 

 



 
















  (2.10) 

 

 Din prima ecuație din (2.10) se poate calcula poziția axei neutre: 

 

0

A A

r dA
dA r A



 


    ,  (2.11) 

 

rezultând: 

     

A

A
r

dA






 .    (2.12) 

 

Integrala de la numitorul relației (2.12) are diferite valori, în funcție de 
forma geometrică a secțiunii transversale. 

Din cea de-a doua ecuație din (2.10) rezultă: 

 

 
2

i

A

Md

r
E dA



 







 .   (2.13) 

 

Integrala de la numitorul relației (2.13) va avea valoarea: 

 

 
2

2 2 2

A A A A

r dA
dA r r dA dA rA rA RA Ae




 


          . (2.14) 

 

 Introducând relația (2.14) în relația (2.13) rezultă relația de legătură: 

 

iMd

EAe




 ,     (2.15) 
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care combinată cu relația (2.8) conduce la determinarea tensiunii normale i  

rezultate în urma acțiunii momentului de încovoiere iM : 

 

1i
i

M r

Ae




 
  

 
   (2.16) 

sau 

     bM y

Ae r y
 


.    (2.17) 

 

 Considerând notațiile geometrice, tensiunile din fibrele extreme 
(interioară 1  și exterioară 2 ) pot fi calculate cu relațiile: 

 fibra interioară:  1
1

1

iM y

Ae R
   ;   (2.18) 

 fibra exterioară:  2
2

2

iM y

Ae R
  .    (2.19) 

În cazul considerării și a solicitării de tracțiune compresiune, tensiunea 
normal totală   se calculează cu relația: 

 

iMN y

A Ae r y
  


 .   (2.20) 

 

Exemplu de calcul 

Pentru bara de curbură mare din figura 2.4 se cunosc: raza de curbură  
130R mm , secțiunea barei este circulară de diametru 80d mm  și faptul că 

este materialul din care este confecționată are o tensiune admisibilă 
150a MPa  .  

Bara este încărcată în punctul , capătul liber, cu două forțe egale cu F   
și 2F . În punctul  bara este încastrată. 

Se cere să se determine forța capabilă F  pe care o poate suporta bara 
fără a se rupe. 

 

Rezolvare: 

Pentru determinarea stării de tensiune este necesar să se traseze  
diagramele de eforturi secționale axiale N , tăietoare T  și încovoietoare iM . 
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Bara poate fi împărțită în două porțiuni distincte:  porțiunea  -  și 
porțiunea  - . 

Discuția se va face pe fiecare porțiune în parte. Dacă în cazul barelor 
drepte discuția era făcută în raport de distanța x , în cazul barelor curbe 
discuția se face în funcție de poziția unghiulară.  

 

 

2F 

F 

O 



d 

R 


F 

2F 

 

 

 
 

(t) 

(r) 





 
R 

 

F 

2F 

R 

(r) 

(t) 





 

 

 
Figura 2.4 

 

Într-un punct oare din cele două porțiuni de bară, eforturile secționale 
se obțin prin proiecția forțelor, stânga sau din dreapta secțiunii considerate, 
pe direcția radială ( )r  și tangențială ( )t , la punctul considerat (figura 2.4). 

Proiecțiile forțelor pe direcție tangențială ( )t  la bara curbă sunt forțele axiale 

N  iar proiecțiile pe direcția radială ( )r  la bara curbă sunt forțele tăietoare. 

Trebuie specificat faptul că se păstrează reguula semnelor. 

 

Porțiunea  -  

Se consideră un punct  situat la o deschidere unghiulară oarecare   

față de orizontala O  -   0 90  . Prin trasarea celor două drepte, una în 

prelungirea razei R  (drecția radială ( )r ) și cealaltă tangentă la raza R  
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(drecția tangențială ( )t ) rezultă, geometric, alte două unghiuri               

(figura 2.3). 

Pentru determinarea influențelor pe care le au forțele cu F   și 2F  în 
punctul , se „mută” cele două forțe în acest punct (reprezentarea punctată 
din figură) și se fac proiecțiile cele două direcții ( )r  și ( )t . Ca urmare se vor 

obține: 

 forța axială:   

1 2 sin 2 cosN F F 

   ; 

 forța tăietoare:   

1 2 cos 2 sinT F F 

   ; 

Observație 

a) Derivând forța axială în funcție de unghiul    obținem: 

 

1 2
1 2cos 2 sin

dN
F F T

d
 





    ; 

 

b) Derivând forța tăietoare în funcție de unghiul    obținem: 

 

1 2
1 2sin 2 cos

dT
F F N

d
 





   . 

 

Cu alte cuvinte forța axială este derivata forței tăietoare și forța 
tăietoare este derivata, cu semnul ( - ), a forței axiale. Ca urmare, unde una din 
aceste forțe este zero, cealaltă va avea o valoare extremă.  

Este evident faptul că, dacă una din forțe are semn constant, pozitiv sau 
negativ, pe intervalul considerat nu trece prin valoarea zero. Dintre cele două 
forțe 1 2N

  și 1 2T
  numai forța axială 1 2N

  poate fi egală cu zero, ceea ce 

înseamnă că, forța tăietoare 21T  are o valoare extremă în intervalul 

considerat.  

Se pune condiția  1 2 0N

 , de unde rezultă: 

 

sin 2 cos 0F F     sau 2tg  . 

 

Ca urmare, unghiul pentru care forța xială este zero va fi:  

 

2 63 26 5arctg    . 
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Valorile forțelor axială și tăietoare în capetele intervalului vor fi: 

 

1

1 2

2

0 2 ;
sin 2 cos

90 .

N F
N F F

N F


 




  
    

  

 

 

1

1 2 max

2

0 ;

cos 2 sin 63 26 5 2,236 ;

90 2 .

T F

T F F T F

T F



  





   


       


  

 

 

Pentru calcul momentului încovoietor se consideră distanțele de la 
punctul  la punctul considerat la unghiul  .  

Astfel, pentru forța 2F  brațul este egal cu distanța dintre punctele  și 
, distanță egală cu 1 cosd R R   .  

Pentru forța F  brațul este egal cu distanța dintre punctele  și , 
adică 2 sind R   

Ca urmare, momentul în punctul  , dat de forțele din punctul  este: 

 

1 2 1 2( ) 2 2 ( cos ) sinM Fd Fd F R R FR  


       . 

 

Derivând relația momentului încovoietor în raport cu unghiul   se 
obține: 

 

   
 1 2

1 2

( ) 2 ( cos ) sin
2 sin cos

d M d F R R FR
R F F RT

d d

  
 

 





  
      

 

Rezultă că derivata momentului încovoietor este egală cu forța 
tăietoare înmulțită cu o coonstantă (în acest caz raza de curbură R  a barei) și 
ca urmare se păstrează proprietatea de la bare drepte: forța tăietoare este 
derivata momentului încovoietor.  

Deoarece forța tăietoare nu este egală cu zero în niciun punct, 
momentul încovoietor, în intervalul  -  nu are nicio valoare extremă. 

Momentul de încovoiere va fi: 

1

1 2

2

0 0;
( ) 2 ( cos ) sin

90 3 .

M
M F R R FR

M FR


  




  
     

  
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Porțiunea  -  

Se consideră un punct  situat la o deschidere unghiulară oarecare   

față de orizontala O  -   0 90  . Prin trasarea celor două drepte, una în 

prelungirea razei R  (drecția radială ( )r ) și cealaltă tangentă la raza R  (drecția 

tangențială ( )t ) rezultă, geometric, alte două unghiuri   (figura 2.3). 

Pentru determinarea influențelor pe care le au forțele cu F   și 2F  în 
punctul , se „mută” cele două forțe în acest punct (reprezentarea punctată 
din figură) și se fac proiecțiile cele două direcții ( )r  și ( )t . Ca urmare se vor 

obține: 

 forța axială   

2 3 cos 2 sinN F F 

   ; 

 forța tăietoare   

2 3 sin 2 cosT F F 

  ; 

Așa cum se poate observa, forța axială 2 3N
  este negativă pe tot 

intervalul considerat în timp ce, forța tăietoare trece de la o valoare negativă, 
pentru 0  . Ca urmare, atât forța axială cât și momentul vor avea valori 

extreme.  

Pentru determinarea unghiului la care acestea au valori extreme se 
pune condiția: 2 3 0T


 , de unde rezultă: 

 

sin 2 cos 0F F    sau 2tg  . 

 

Ca urmare, unghiul pentru care forța tăietoare este zero va fi:  

 

2 63 26 5arctg    . 

 

Valorile forțelor axială și tăietoare în capetele intervalului vor fi: 

 

2

2 3 max

3

0 ;

cos 2 sin 63 26 5 2,236 ;

90 2 .

N F

N F F N F

N F



  





   


       


  

 

2

2 3

3

0 2 ;
sin 2 cos

90 .

T F
T F F

T F


 




   
   

 
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Pentru calcul momentului încovoietor se consideră distanțele de la 
punctul  la punctul . Astfel, pentru forța 2F  brațul este egal cu distanța 
dintre punctele  și , distanță egală cu 3 sind R R   .  

Pentru forța F  brațul este egal cu distanța dintre punctele  și , 
adică 4 cosd R  . 

Ca urmare, momentul în punctul  , dat de forțele din punctul  este: 

 

2 3 3 4( ) 2 2 ( sin ) cosM Fd Fd F R R FR  


       . 

 

Considerând valorile de capăt ale unghiului   și valoarea de extrem 

pentru 63 26 5    se obțin următoarele valori: 

 

2

1 2 3 4 max

3

0 ; 3 ;

( ) 2 2 ( sin ) cos 63 26 5 ; 4,236 ;

90 ; 4 .

M FR

M Fd Fd F R R FR M FR

M FR



   





   


        


 

 

 Pentru trasarea diagramelor se consideră axa longitudinală a barei 
curbe și se ține cont de relațiile dependente de funcțiile trigonometrice sin , 
cos , sin   și cos . 

În figura 2.5 este prezentată diagrama de forțe axiale, în figura 2.6 
diagrame de forțe tăietoare iar în figura 2.7 diagrama de momente 
încovoietoare. 

Așa cum rezultă din calculele de mai sus, pe porțiunea  - , pentru un 

unghi 63 26 5    se obțin valori maxime pentru forța axială 

max 2,236N F   și pentru monetul încovoietor max 4,236M FR  . 

Pentru determinarea tensiunii maxime normale   se iau în 
considerare ambele solicitări simple, de compresiune și de încovoiere: 

a) solicitarea de compresiune - determinarea tensiunii normale maxime de 

compresiune c  se face pe baza relației clasice:  

 

4max
2 2

2,236 8,944
4,448 10

80

4

c

N F F
F

dA


 

        


; 
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 = 63°26’82’’ 

2F 

-F 

-2,236F 

 = 63°26’82’’ 

+ 

- 

 
Figura 2.5 

 

 = 63°26’82’’ 

F -F 

-2,236F 

 = 63°26’82’’ 

- 

- 

-2F 

- 

+ 

- 

 
Figura 2.6 
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-F 

- 4,236FR 

 = 63°26’82’’ 

- 

- 4FR 

- 3 FR 

 
Figura 2.7 

 

b) solicitarea de încovoiere – determinarea tensiunilor rezultate la încovoiere 
se realizează pe baza relațiilor lui Winkler. Pentru început se determină raza 
axei neutre conform relației:  

 

2
21

2 4

d
r R R

 
   

 
 

, 

 

relație pentru secțiunile circulare, în care R  este raza de curbură ( 130R mm ) 

iar d  este diametrul secțiunii transversale a barei ( 80d mm ). 

Înlocuind obținem (figura 2.8): 

 

2
21 80

130 130 126,846( )
2 4

r mm
 

    
 
 

. 

 

Ca urmare, distanța dintre raza de curbură a barei și raza axei neutre 
este (figura 2.7): 

 

130 126,846 3,154 ( )e mm    
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Pe baza cotelor geometrice din figura 2.8, rezultă: 

1 40 3,154 36,846 ( )
2

d
y e mm      

și     

2 40 3,154 43,154 ( )
2

d
y e mm     , 

 

iar razele care sunt situate fibrele sunt: 

 pentru interior:  1

80
130 90 ( )

2 2

d
R R mm      

 

 pentru exterior: 2

80
130 170 ( )

2 2

d
R R mm      

 

 R 

R2 

R1 

r 

y2 y1 

e 

d 

O 

c - 

- int 
+ ext 

 
Figura 2.8 

 

Aplicând relația lui Winkler și ținând cont că diagrama de momente 
este de partea fibrei întinse, obținem: 



REZISTENȚA MATERIALELOR BARE CURBE PLANE 

 

60 

 pentru fibra din interior, situată la raza 1R : 

max 1 1
int 2

1 1

4,236 4,236 130 36,846
0,01422

80 90
3,154

4

M y yFR F
F

eA R eA R




 
        




; 

 

 Pentru fibra din exterior, situată la raza 2R : 

 

max 2 2
2

2 2

4,236 4,236 130 43,154
0,00881

80 170
3,154

4

ext

M y yFR F
F

eA R eA R




 
    




. 

 

Ca urmare, tensiunea maximă datorată încovoiecii este la interior fiind 
egală cu:  

int 0,01422F   . 

 

Ținând cont și de tensiunea determinată de solicitarea de compresiune, 
se oține o tensiune totală de: 

 
4

,max int 4,448 10 0,01422 0,0137752total c F F F           . 

 

Punând condiția de rezistență: ,maxtotal a  , 

obținem inegalitatea:   0,0137752 150F  ,  

de unde rezultă forța capabilă:  10.889,13F N . 
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CALCULUL DEFORMAȚIILOR 

GRINZILOR DREPTE 3 
 

 

 

 

 

3.1 Introducere 
 

Un aspect important îl constituie calculul deformațiilor acestora, 
deformații care se pot grupa în două categorii: 

 Deformații/deplasări după o direcție din spațiu; 

 Rotiri în jurul unei direcții din spațiu. 

Pentru calcul deformațiilor au fost dezvoltate numeroase metode, unele 
pur analitice sau grafo-analitice – bazate pe aspectul geometric al deformării, 
altele energetice - bazate pe energia internă de deformație generate de lucrul 
mecanic al încărcărilor exterioare. 

  Indiferent de metoda adoptată calculul urmărește determinarea formei 
deformate a structurilor mecanice  precum și valoarea deformării într-un 
punct oarecare. 

 Metodele analitice și grafo-analitice, spre deosebire de cele energetice, 
au o serie de limitări, care vor fi evidențiate în cele ce urmează. 

 

3.2.  Metode analitice 
 

3.2.1. Ecuația fibrei medii deformate 

 

O metodă fundamentală, analitică, de calcul a deformațiilor unei grinzi 
drepte este cea de rezolvare a ecuației fiberi medii deformate a grinzilor 
(barelor) drepte. Pentru aceasta se consideră o grindă, prin fibra ei medie, 
raportată la un sistem de axe ortogonal xOy  (figura 3.1). 

Grinda se consideră supusă unei solicitări simple de încovoiere pură-
plană prin acțiunea momentelor de încovoiere iM .  
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Originea sistemului de coordonate în reazemul din punctul O . Pentru 
calcul se alege o secțiune în punctul , la o distanță oarecare x  de origine. În 
punctul considerat, grinda are o deformare caracterizată de deplasarea 
verticală, definită și sub denumirea de săgeată, v  și de rotirea  , ambele fiind 

dependente de poziția punctului considerat . 

 

 
Figura 3.1 

 

Astfel, cele două deformații pot fi exprimate de dependențele: 

 

( )v v x  și ( )x  .  (3.1) 

 

În sistemul de coordonate prezentat mai sus, săgeata se va fi pozitivă 
dacă este orientată în jos, iar rotirea se va considera pozitivă dacă determină o 
rotire în sens orar. 

În același timp, în punctul considerat, deformarea grinzii este definită 
de o rază de curbură  . Conform celor cunoscute de la matematică, între 

deplasarea verticală v   și raza de curbură   există relația de legătură: 

 

 
3

2 2

1

1

v

v





 
 

,   (3.2) 

 

unde prin v   s-a notat derivata ordinară de ordinul doi a săgeții în raport cu 
distanța x : 

2

2

( )d v x
v

dx
  .    (3.3) 
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În ipoteza micilor deformații, se poate face aproximarea: 

 

 
2

1 1v  ,    (3.4) 

 

relația (3.2) devenind: 
2

2

1 ( )d v x

dx
 .    (3.5) 

 

Pornind de la forma deformată a grinzii se consideră un al doilea punct 
 situat la o distanță foarte mică (infinitezimală) dx  de punctul  . În punctul 
 are loc o creștere a săgeții cu valoarea dv , valoarea totală fiind v dv .   

În ipoteza micilor deformații, segmentul de grindă ds  între punctele  
și  poate fi aproximat cu o linie dreaptă de lungime dx .  

Ca urmare, în triunghiul cuprins  între punctele  și  se poate scrie 
relația trigonometrică: 

 

dv
tg

dx
  .    (3.6) 

 

și ținând cont și de ipoteza micilor deformații se poate face aproximația: 

 

dv

dx
 .    (3.7) 

 

Pe baza relațiilor (3.5) și (3.7) se poate scrie egalitatea: 

 
2

2

1 ( )d v x d

dx dx




  .   (3.8) 

 

Determinarea relațiilor de calcul pentru săgeată și rotire pornește de la 
egalitatea: 

 

1 i

z

M

EI
 ,    (3.9) 
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determinată în calculul relației lui Navier, cu observația că momentul de 
încovoiere este dependent de distanța x , ( )i iM M x . 

 Produsul zEI  este definit a fi modul de rigiditate la încovoiere al 

secțiunii transversale omogene.  În cazul grinzilor cu secțiune neomogenă 
modulul se determină ca sumă de module ale fiecărei componente neomogene 

calculată față de axa neutră:  
1

n

i zi

i

E I


 . 

Din relația (3.9) rezultă că, în cazul în care atât momentul încovoietor 

iM  cât și modulul de rigiditate zEI  sunt constante pe toată lungimea grinzii, 

raza de curbură este constantă și, ca urmare, deformarea grinzii va fi de forma 
unui arc de cerc.  

Avându-se în vedere faptul real că deformarea dată de forțele de tăiere 
sunt mai mici comparativ cu cele generate de momentul de încovoiere, relația 
(3.9) este considerată și în cazul încovoierii simple și, ca urmare, relațiile de 
calcul determinate în continuare sunt valabile și pentru această formă de 
încovoiere. 

 Prin combinarea relațiilor (3.5)  cu (3.9) rezultă egalitatea: 

 
2

2

1 ( ) i

z

Md v x

dx EI
  .   (3.10) 

 

 Pentru sistemul de axe considerat în figura 3.1, axa Oy  are sensul 

pozitiv orientat în jos și pentru un moment pozitiv de încovoiere (așa cum este 
considerat în figură) se poate observa că, odată cu creșterea distanței x   de la 
ponctul O , are loc o micșorare a valorii unghiului de rotire   , de la valoarea 

maximă ( max  în punctul O ) la valoarea 0, în punctul în care săgeata v  este 

maximă (tangenta la forma deformată a grinzii în punctul de deformare 
maximă devine orizontală și unghiul  0  ).  

Ca urmare, din punct de vedere matematic, funcția dată de relația (3.7), 
( ) ( )x v x  , scade și ( ) ( ) 0x v x   , aspect care este contrar ecuației (3.10). 

Pentru a exista corelare între fenomenul fizic și relația de calcul (3.10) 
se va considera în aceasta semnul negativ: 

 
2

2

( ) i

z

Md v x

dx EI
  .    (3.11) 
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 Așa cum se știe, între eforturile secționale există o serie de relații de 
legătură:  

 
2

2

( ) ( )
( )id M x dT x

q x
dx dx

   .   (3.12) 

 

Ținând cont de aceastea și de relațiile (3.11) și (3.7) rezultă 
următoarele egalități: 

 
3

3

( ) ( )

z

d v x T x

dx EI
  ,    (3.15) 

4

4

( ) ( )

z

d v x q x

dx EI
 .    (3.14) 

 

3.2.2. Integrarea analitică a ecuației diferențiale a fibrei medii 
deformate 

 

Pentru determinarea săgeții și rotirii într-un punct oarecae, de-a lungul 
unei grinzi drepte, pe porțiuni de secțiune constantă și care este realizată     
dintr-un material cu modulul de elasticitate cunoscu și constant, este necesar 
să se integreze relațiile (3.11), (3.15) și (3.14): 

 

 rotirea:   ( ) b

z

Mdv
x dx

dx EI
    ,  (3.15) 

 

 săgeata:   ( ) ( )y x v x dx  .  (3.16) 

 

 

Prin integrarea relațiilor (3.15) și (3.16) rezultă două constante de 
integrare 1C  și 2C , care se determină din condițiile de legătură și din condițiile 

de continuitate ale grinzilor. 

 Condițiile de legătură se referă la valorile pe care le au deformațiile 
și/sau rotirile în dreptul lor, ținând cont de faptul că legăturile blochează 
grade de libertate.  
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Astfel, în cazul reazemelor, articulațiilor și încastrărilor deplasările 
sunt egale cu zero, iar în cazul încastrării apare, în plus, rotirea egală cu zero 
(figura 3.2).  

 Condițiile de continuitate ale fibrei medii deformate se referă la faptul 
că grinzile ca urmare a deformării lor nu se rup. Cu alte cuvinte, fibra este o 
curbă continuă,  în punctele în care are loc o modificare fie a secțiunii fie a 
încărcării nu are loc ruperea acestora.  

Condițiile care se iau în considerare în calcul se referă la egalitatea 
săgeților și rotirilor, în stânga și în dreapta punctelor în care au loc aceste 
modificări (figura 3.3). 

 

 

 

v = 0 

 
a) 

 

 

v = 0 

 
b) 

 

 

v = 0  = 0 

 
c) 

 

Figura 3.2 a) reazem simplu 0v ; b) articulația 0v ; c) încastrarea 

0; 0v    

 

 

F 

 

v1s v1d 

1d 

1s 

Grinda nedeformată 

Grinda deformată  
 

Figura 3.3 
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Pe baza figurii 3.3, condițiile de continuitate pentru punctual  sunt: 

 pentru săgeată - săgeata din stînga punctului trebuie să fie egală cu 
cea din dreapta punctului 

 

1 1s dv v     (3.17) 

 

 pentru rotire - rotirea din stînga punctului trebuie să fie egală cu 
cea din dreapta punctului         

 

                                 1 1s d      (3.18) 

 

Pentru rezolvarea problemelor se parcurg următoarele etape: 

a) după determinarea reacțiunilor se scrie relația de calcul a 
momentului încovoietor pe fiecare porțiune; 

b) se scrie pe fiecare porțiune se calculează, cu relațiile (3.16) săgeata 
și (3.15) rotirea obținându-se, pentru fiecare interval câte două 
constante de integrare; 

c) se determină, pe baza condițiilor (3.17) și (3.18), constantele de 
integrare. 

De notat faptul că, în cazul în care există un număr „ q ” de intervale vor 

exista un număr „2q ” de constante de integrare. Pentru determinarea 

constantelor va rezulta un system de ecuații algebrice format din „ 2q ” ecuații. 

  Această metodă analitică aproximativă, a fibrei medii deformate, poate 
fi aplicată în cazul calculului deplasărilor și rotirilor elastice grinzilor drepte, 
pe porțiuni cu caracteristici mecanice și geometrice constante. 

 Având în vedere existența pe fiecare zonă a două constante de 
integrare este de preferat ca să fie aplicată pentru grinzi cu încărcare simpă și 
cu puține zone.    

 

Aplicația 3.1.  

Grindă dreaptă încastrată la un capăt și liberă la celălalt, încărcată cu o 
forță concentrată F . Se consideră grinda cu modul de rigiditate constant și de 
lungime L  (Figure 3.4). 

 

Rezolvare: 

Momentul de încovoiere la o distanță oarecare  x , de încastrarea din 
punctual , este dat de relația: 
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( )ixM F L x  . 

 

 

v 

  

x 

L 

F 

vmax 
max

F M
1 

 
Figura 3.4 

 

Conform relațiilor (3.15) și (3.16) avem: 

 

 
2

1

1
( )

2
i

z z z

M F x
x dx F L x dx Lx C

EI EI EI


 
       

    

 

2 2 3

1 1 2( )
2 2 6z

x F x x
v x F Lx C dx L C x C

EI

    
          

    
 . 

 

Așa cum rezultă din relațiile de integrre se obțin două constante 1C  și  

2C  care se calculează ținând cont de condițiile din încastrare. Astfel, în 

punctual  avem: 

0

0

0;

0.

x

xv











  

 

iar din calcule rezultă: 

     
1

2

0 ;

0 .

C

C





 



REZISTENȚA MATERIALELOR CALCULUL DEFORMAȚIILOR GRINZILOR DREPTE 
 

69 

Introducând constantele 1C  și 2C  în relațiile de calcul ale săgeții și 

rotirii, valorile maxime ale deformațiilor vor fi calculate pentru x L : 

 
2

1

3

1

;
2

.
3

x L

z

x L

z

FL

EI

FL
v v

EI

 





 



  



 

 

Observație:  

 pentru un punct situat între  și  săgeata și rotirea se obțin 
introducând valoarea distanței x  , considerată din punctual . 

 

Aplicația 3.2.  

Grindă dreaptă încastrată la un capăt și liberă la celălalt, încărcată cu o 
forță distribuită de intensitate  q . Se consideră grinda cu modul de rigiditate 

constant și de lungime L  (figura 3.5). 

 

 

YA 
L 

MA B 

x 

q 

vmax 

max

A 

 
Figura 3.5 

 

Rezolvare:  

Momentul încovoietor iM , la o distanță x   față de punctual A , este: 

 

 
2 2 2

2 22
2 2 2 2

ix A A

qx qL qx q
M M Y x qLx L Lx x           . 

 

Conform relațiilor (3.15) și (3.16) avem: 
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 
2 3

2 2 2
1( ) 2 2

2 2 2 3
ix

z z z

M q q Lx x
x dx L Lx x dx L x C

EI EI EI


 
         

   . 

 

3 2 3 4
2 2 2

1 1 2( )
2 3 2 2 3 12z z

q x q x x x
v x L x Lx C dx L L C x C

EI EI

    
            

    
 . 

 

Originea sistemului de referință, în cazul acesta, este considerată în 
punctul A , iar condițiile de legătură sunt: 

 

 
0

0

0;

0.

x

xv











 

 

Pe baza relațiilor de mai sus, avem: 

 

1

2

0;

0.

C

C





 

 

Introducând constantele 1C  și 2C  în relațiile de calcul ale săgeții și 

rotirii rezultă: 

 
3

4

;
6

.
8

B x L

z

B x L

z

qL

EI

qL
v v

EI

 





 



  



 

 

Aplicația 3.3   

Grindă dreaptă articulată la un capăt (în punctul A) și rezemată la 
celălat capăt (în punctul B ), încărcată cu o forță distribuită de intensitate q . 

Se consideră grinda cu modul de rigiditate constant și de lungime L           
(figura 3.6). 

 

Rezolvare:  

Momentul de încovoiere ixM , la o distanță oarecare x   față de punctul 

A  (originea sistemului de referință) este: 
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2 2

2 2 2
ix A

qx qLx qx
M Y x     

 

  

x 

A B 

x 

v 

q 

YA 

L 

 
Figura 3.6 

 

Conform relațiilor (3.15) și (3.16) avem: 

 
2 2 3

1

1 1

2 2 4 6z z

qLx qx qLx qx
dx C

EI EI


   
         

    . 

 

2 3 3 4

1 1 2

1 1

4 6 12 24z z

qLx qx qLx qx
v C dx C x C

EI EI

    
            

    
 . 

 

Deplasările pe verticală în legăturile A  și B  sunt egale cu zero: 

 

0 0;

0.

A x

B x L

v v

v v





 


 

 

 

Pe baza condițiilor de legătură rezultă:  

 

2

4 4 3

1 1

0 ;

0 .
12 24 24 z

C

qL qL qL
C L C

EI



 
      
 
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Introducând constantele  1C  și 2C  în relațiile de calcul ale rotirii și 

deplasării se obțin relațiile: 

 

2 3 3

3 4 3

1
;

4 6 24

1
.

12 24 24

x

z z

x

z z

qLx qx qL

EI EI

qLx qx qL
v x

EI EI


  

     
  


 
    

   

 

Valoarea maximă a deformației are loc la jumătatea deschiderii grinzii, 

pentru 
2

L
x . Înlocuind această valoare în relația de calcul a săgeții rezultă: 

 
4

max

5

384 z

qL
v

EI
 , 

 

unde rotirea este egală cu zero. 

Rotirea este maximă în legături A  și B , pentru 0x   sau x L . Valorile 

acestora sunt aceleași, dar de semen contrare A B  . Introducând una din 

aceste valori în relația de calcul a rotirii se obține: 

 
3

24
A B

z

qL

EI
   . 

 

Aplicația 3.4  

Grindă dreaptă articulată la un capăt (în punctual ) și rezemată la celălat 
capăt (în punctual ), încărcată cu o forță concentrată de intensitate F , la 
mijlocul deschiderii ei. Se consideră grinda cu modul de rigiditate constant și 
de lungime L  (figura 3.7). 

 

Rezolvare: 

Așa cum se poate observa, grinda este divizată în două regiuni:  -  și 
 - . Ca urmare, analiza se va face pe fiecare prițiune în parte. Momentul de 
încovoiere între punctele  și , la o distanță oarecare x  este: 
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 , 1 2 2ix

Fx
M




 
 

L/2 

L 

  

   

F 

F/2 

v2 

F/2 
x 

x 

 
Figura 3.7 

 

Conform relațiilor (3.15) și (3.16) avem: 

 
2

1 2 1

1 1

2 4z z

Fx Fx
dx C

EI EI



     

 
2 3

1 2 1 1 2

1 1

4 12z z

Fx Fx
v C dx C x C

EI EI


 
      

  . 

 

Pe intervalul  - , momentul de încovoiere este: 

 

 , 2 3 2 2 4 2 2 2bx

F L FL Fx F L
M x Fx x



   
         

   
. 

 

Pe baza relațiilor (3.15) și (3.16) rezultă: 

 
2

2 3 3

1 1

2 2 4 4z z

F L FLx Fx
x dx C

EI EI




  
       

    , 

 

2 2 3

2 3 3 3 4

1 1

4 4 8 12z z

FLx Fx FLx Fx
v C dx C x C

EI EI


    
           

    
 . 
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Așa cum se poate observa, rezzultă un număr de patru constante de 
integrare 1C , 2C , 3C  și 4C . Valorie acestor constante se obțin punând condițiile 

de legătură șI continuitate 

Condițiile de legătură se rferă la legăturile grinzii din punctele  și . 
În aceste puncte grinda este rezemată și ca urmare deplasările sunt nule, Din 
relațiile de calcul ale deplasărilor ( )v x , pentru fiecare porțiune în parte, 

rezultă: 

 

 1 21 2 , 0
0

x
v v C

 
   . 

 

 

2 3 3

3 3 4 3 4
2 3 ,

2

0
2 2 4 8 6 2 48 2

L
x

F L L L L FL L
v v C C C C

EI EI 

 
         

 
. 

 

Condițiile de continuitate se referă la faptul că în punctul  grinda nu 
se rupe. Ca urmare atât rotirea cât și deplasarea punctului  au aceași valoare 
în stânga (stg.) și dreapta (dr.) acestui punct: 

 

2, 2,stg drv v   
   2 3 , 0
1 2 ,

2

L x
x

v v
 

 
   3

1 4

1

12 8 2z

F L L
C C

EI
    

     

2, 2,stg dr    
   2 3 , 0
1 2 ,

2

L x
x

 
 

 
   2

1 3

1

4 4z

F L
C C

EI
    

     

Ca urmare, rezultă un system cu patru ecuații și patru necunoscute, 
constantele de integrare  1C , 2C , 3C  și 4C : 

 

2

3

3 4

3

1 4

2

1 3

0 ;

0;
48 2

1
;

96 2

1
.

16

z

z

C

FL L
C C

EI

FL L
C C

EI

FL
C C

EI



    



  



  

  
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Sistemul are soluțiile: 

 

 
2

1
16

FL
C

EI
 , 2 3 0C C  ,  și    

3

4
48

FL
C

EI
 . 

 

Pentru determinarea săgeții în punctul  se consideră fie relația de 
calcul a săgeții pentru intervalul  -   pentru o valoare 2x L , fie relația de 

calcul a săgeții pentru intervalul  -  pentru o valoare 0x  . 

Rotirile sunt maxime în punctele   și . Pentru determinarea rotirii în 
punctual  se consideră fie relația de calcul a rotirii în intervalul  -   
pentru o valoare 0x , fie relația de calcul a rotirii  în intervalul  -  pentru o 

valoare 2x L . Rotirea în punctul  este nulă, indifferent de intervalul 

considerat. 

 
Aplicația 3.5 

Grindă dreaptă articulată la un capăt (în punctual ) și rezemată la celălat 
capăt (în punctual ), încărcată cu o forță concentrată de intensitate F , la o 
distnță a  față de punctul . Se consideră grinda cu modul de rigiditate 
constant și de lungime L  (figura 3.8). 

 
 

a 

L 

  

   

F 

v2 

Y1 Y3 
b 

x x 

 
Figura 3.7 

 

Rezolvare: 

Așa cum se poate observa, grinda este divizată în două regiuni:  -  și 
 - . Ca urmare, analiza se va face pe fiecare prițiune în parte. 

Reacțiunile sunt: 

1

Fb
Y

L
      și     3

Fa
Y

L
  
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Momentul de încovoiere între punctele  și , la o distanță oarecare x  
este: 

 

  1, 1 2ix

Fbx
M Y x

L
  . 

 

Conform relațiilor (3.15) și (3.16) avem: 

 
2

1 2 1

1 1

2z z

Fbx Fbx
dx C

EI L EI L



     

 
2 3

1 2 1 1 2

1 1

2 6z z

Fbx Fbx
v C dx C x C

EI L EI L


 
      

  . 

 

Momentul de încovoiere între punctele  și , la o distanță oarecare x  
este: 

 

   1, 2 3
( )

ix

Fb
M Y a x Fx a x Fx

L
      . 

 

Conform relațiilor (3.15) și (3.16) rezultă: 

 

2 2

2 3 3

1 1
( )

2 2z z

Fb Fb x Fx
a x Fx dx ax C

EI L EI L




   
          

    
  

 

2 2 2 3 3

2 3 1 3 4

1 1

2 2 2 6 6z z

Fb x Fx Fb ax x Fx
v ax C dx C x C

EI L EI L


        
                

        


 

3.3. Metode grafo-analitice de calcul a deformațiilor la 
solicitarea simplă de încovoiere 
 

Metodele grafo-analitice, așa cum sugerează și denumirea, combină 
calculul analitic cu aspectul grafic al diagramelor de încovoiere.  
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3.3.1. Metoda grinzilor fictive 

 

 Fundamentarea metodei și etapele de lucru sunt prezentate în cele ce 
urmează. Metoda se numeşte grafo-analitică deoarece îmbină reprezentarea 
grafică a diagramei de momente încovoietoare datorate încărcării reale cu o 
componentă analitică reprezentată de ecuația diferențială a fibrei medii 
deformate. 

Această metodă are la bază asemănarea care există între relațiile 
diferențiale ale eforturilor secționale și relațiile diferențiale ale deplasărilor 
(3.12): 

 
2

2
( )id M dT

p x
dx dx

    

 

și (3.11) din care se obține:  

 
2

2

( )
i z z

d v x d
M EI EI

dx dx


   .   (3.19) 

 

Pentru determinarea deformațiilor grinda reală se transformă într-o 
„grindă fictivă” construită din cea reală pe baza regulilor prezentate în        
tabelul 3.1 

În orice regiune poate fi scrisă relația de calcul: 

 
2

2

( ) ( )z z
i

d EI d EI v
M

dx dx


   .   (3.20) 

 

Ca urmare a încărcărilor exterioare grinda este solicitat la încovoiere. 
Diagrama de momente încovoietoare se transformă într-o forță distribuită, 
denimită forță fictivă: 

 

* ip M      (3.21) 

 

Sensul de acționare al forței fictive este următorul: pentru diagrama 
situată sub grinda fictivă sensul forței este îndreptat în jos iar pentru cele 
situate deasupra sensul de acțiune este în sus. 
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Tabelul 3.1 

Nr.crt. Grinda reală Grinda fictivă 

1. Reazem de 
margine 

 

 

 

Reazem de 
margine 

 

 

 

2. Reazem 
intermediar 

 

 

 

Articulație 
intermediară 

 

 

3. Articulația 
intermediară 

 

 

Reazem 
intermediar 

 

 

 

4. Încastrare 
 

 

 

Capăt liber 
 

 

5. Capăt liber 
 

 

Încastrare 
 

 

 

 

Ca urmare a acțiunii forței fictive *p  în grinda fictivă apar, identic cu 

cazul grinzilor reale, reacțiuni fictive, forțe tăietoare fictive *T  și momente 

încovoietoare fictive *
iM . Ținând cont de relațiile de legătură între eforturile 

secționale din cazul grinzilor reale, pot fi scrise și în cazul grinzilor fictive 
relațiile: 

 

2

2

**
* id MdT

p
dx dx

      (3.22) 

 

 Ținând cont de relațiile (3.20) și (3.21) rezultă ecuația diferențială: 

 

2 2

2 2

*( ) *z id EI v d M dT

dx dx dx
  .  (3.23) 

 

 Din relația (3.23), prin integrare succesivă rezultă: 

 

1 1

*( )
*z id EI v dM

C T C
dx dx

      (3.24) 
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1 2
*

z iEI v M C x C   ,   (3.25) 

 

unde 1C  și 2C  sunt constante de integrare. 

 Din relațiile (3.24) și (3.25) rezultă relațiile de calcul ale rotirilor și 
săgeților: 

 

1*

z z

CT

EI EI
   ,   (3.26) 

 

1 2
*
i

z z

M C x C
v

EI EI


  .   (3.27) 

 

Relaţia diferenţială aproximativă a fibrei medii deformate (3.20) şi 
relaţiile (3.26) și (3.27) reprezintă nişte familii de curbe iar 1C  şi 2C  sunt 

constante care se determină pe baza condiţiilor de legătură şi de continuitate 
pentru fibra medie deformată.  

Astfel, se alege din familia de curbe o anumită curbă, care corespunde 
unor valori particulare pentru constantele de integrare 1C  şi 2C . Acest 

procedeu a fost folosit şi la integrarea analitică a ecuaţiei diferenţiale 
aproximative la care, prin determinarea constantelor de integrare s-a 
determinat chiar curba care să corespundă cu fibra medie deformată.  

Metoda grinzii fictive se bazează pe faptul că există o curbă, în familia 
de curbe amintite mai sus, care să exprime deformata, cu respectarea condiţiei 

1 2C C . 

Pentru ca relațiile (3.26) și 3.27) să respecte fenomenul fizic, grinda 
fictivă este astfel aleasă încât să fie satisfăcute toate condiţiile de legătură şi 
continuitate ale fibrei medii deformate. Acest lucru este posibil dacă 
constantele de integrare sunt egale cu zero și ca urmare relațiile (3.26) și 
(3.27) devin: 

 

*

z

T

EI
  ,    (3.28) 

*
i

z

M
v

EI
 .    (3.29) 
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Observație ! 

 În cazul unor încărcări reale complexe, diagramele trebuie descompuse 
în diagrame mai simple (figuri geometrice simple) pentru care aria și poziția 
centrului de greutate sunt cunoscute fiind suprapuse efectele acestora. 
 Spre exemplu, în cazul forțelor distribuite apar suprafețe delimitate de 
parabole (figura 3.8), calculul ariilor și a pozițiilor centrelor de greutate fiind 
calculate cu relațiile: 

 

bhAbhA
3

1
;

3

2
21   

 

b 

h
 

 

G2 

0,25b 

0,625b 

Parabola  
tangentă  

la orizontală 

G1 

 
Figura 3.8 

 

 

Aplicația 3.6 

Etapele de calcul se prezintă considerând o  grindă așezată pe două reazeme 
A  și B  și care are o consolă B  -  pe care este o forță distribuită, constantă 

de intensitate q  (figura 3.9). 

 

Rezolvare: 

 etapa 1 - se consideră grinda reală, pentru care se trasează, cu 
metodologia cunoscută, diagrama de momente încovoietoare               
(figura 3.9); 

 etapa 2 - pe baza tabelului 3.1 se trasează grinda fictivă (figura 3.9); 
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l 

L 
  

x 

 

A 

a 

 

 

*
AY  

B 

B 

q 

A 

 

 

p* y 

 
 

Figura 3.9 

 

 etapa 3 - se încarcă grinda fictivă (conjugată) cu încărcarea fictivă dată de 
relația (3.28): 

 

iMp *  

 

astfel încât dacă momentul de încovoiere este pozitiv, 0iM , forța fictivă 

*p să fie îndreptată în sensul pozitiv al axei y , iar dacă momentul e încovoiere 

este negativ, 0iM , forța fictivă *p să fie îndreptată în sensul negativ al axei 

y . 

 etapa 4 - se determină reacțiunile din elementele de legătură ale grinzii 
conjugate; 

 

Se determină reacțiunea fictivă din A  calculând momentul fictiv în punctul B : 

 

0
322

1 2
** 

lpa
llYM AiB , de unde rezultă 

12

2
* lpa

YA   

 

 etapa 5 - se determină variația eforturile conjugate *T  și *
iM  de pe grinda 

conjugată și cu ajutorul relațiilor (3.28) și (3.29) se determină rotirea și 
săgeata în punctele dorite. 

a. rotirea din punctul A  va fi:   
zz

A

z

A
A

EI

lpa

EI

Y

EI

T

12

2**

  
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b. pentru determinarea săgeții în punctul  trebuie calculat momentul 
fictiv din punctul respectiv: 

 

)34(
244

3

2332
)(

12

222

1
* al

paapaa
a

ll
al

lpa
Mi 








  

 

ca urmare, săgeata este: )34(
24

2
1

1

*

al
EI

pa

EI

M
v

zz

i   

 

Aplicația 3.7 

Se consideră grinda încastrată la un capăt șI liberă la celălalt încărcată cu forța 
distribuită constantă de intensitate q  (Figura 3.10). Se cere să se calculeze 

rotirea și săgeata din punctul . 
 

 

L 

q 

 

 

qL2/2 

O 
EIz 

Grinda fictivă 

Forta fictivă 

v 

 
Figura 3.10 

 

Răspuns: 

Pentru determinarea rotirii șI a săgeții trebuie să se calculeze forța tăietoare 
fictivă șI momentul de încovoiere fictive din punctual . 

Forța tăietoare fictivă din punctul  va fi egală cu aria diagramei de moment 
de încovoiere al încărcării reale (figura 3.10): 

 

623

32
*

1

qLqLL
T  , 
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iar momentul fictive este: 

 

84

3

23

1 42
*
1

qLLqL
LMi  , 

 

de unde rezultă: 

  

















.
8

;
6

4*
1

1

3*
1

1

EI

qL

EI

M
v

EI

qL

EI

T

b



 

 

Metoda grinzii fictive a fost dedusă pentru o grindă de secţiune 
constantă putând fi extinsă şi la calculul deplasărilor grinzilor cu secţiune 
variabilă în trepte. 

 

Aplicația 3.8 

Se consideră grinda din figura 3.11, rezemată în punctele A  și B  și  încărcată 
cu o forță F   la distanța a  față de reazemul din punctul A . 

 

Răspuns: 

Grinda fictivă rămâne identică cu cea reală. Se trasează diagrama de momente 
șI se transformă în forță distribuită. 

 

Fab/L 

EIz 

Grinda fictivă 

v 

  

F 

YA 

 

YB 

A B 

a b 

  

L 

*

A
Y  

*

B
Y  

 
Figura 3.11 
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Reacțiunile fictive sunt: 

- din suma de momente față de punctul B  egală cu zero: 

 

L

bLFabLb

L

Fab
L

L
YA

6

)(

32

11* 



 , 

 

- din suma de momente față de punctul A  egală cu zero: 

 

L

aLFabLa

L

Fab
L

L
YB

6

)(

32

11* 



 . 

 

Rotirile în cele două reazeme A  și B  vor  vor fi calculate cu ajutorul 
forțelor tăietoare fictive din cele două reazeme, practice cu reacțiunile fictive 
din A  și B : 

 

zz

A

z

A
A

EIL

bLFab

EI

Y

EI

T

6

)(**


 ; 

 

zz

B

z

B
B

LEI

aLFab

EI

Y

EI

T

6

)(** 
 . 

 

Pentru determinarea săgeții în punctul  se consinderă momentul 
fictiv din acest punct, rezultând 

 

L

bFaa

L

Fab
aa

L

bLFab
Mi

332

1

6

)( 22
*
1 


 , 

 

de unde rezultă: 

     
zz

i

LEI

bFa

EI

M
v

3

22*
1

1  . 
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3.3.2. Ecuația celor două rotiri și ecuația celor două săgeți 

 

Se consideră grinda din figura 3.12 încărcată cu o serie de forțe și 
momente exterioare. Se izolează o proțiune  -  care are lungimea 12l  și cu 

modul de rigiditate constant .constEI z    
 

Fk Fn 
EIz 

  

v1 v2 1 2 

q 

Grinda fictivă 

Mi = p* 

A12 

M*
2  M*

1  

T*
2  T*

1  

d2 
l12 

G 

 
 

Figura 3.12 

 

Se consideră grinda fictivă corespunzătoare lungimii 12l  considerate, cu 

diagrame de momente încovoietoare corespunzătoare acetei porțiuni. 
Suprafața cuprinsă între cele două puncte analizate are varia 12A  și momentul 

static, calculat față de punctul  egal cu: 

 

21212 dAS  .    (3.30) 

 

Pe porțiunea  -  se scriu ecuațiile de echilibru: 

 

02121   TAT , 

 

din care rezultă:        
  2121 TAT    (3.31) 

 

și  
  2121211 MSlTM  
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din care rezultă: 

022121211   MdAlTM   (3.32) 

 

 Împărțind relațiile (3.31) și (3.32) cu modul de rigiditate constant zEI  

se obțin: 
 

zzz EI

T

EI

A

EI

T 

 2121    (3.33) 

 

zzzz EI

M

EI

S

EI

lT

EI

M 

 2121211   (3.34) 

 

sau ținând cont de cele stabilite în cazul metodei grinzilor fictive: 
 

2
12

1  
zEI

A
,    (3.35) 

 

2
12

1211 v
EI

S
lv

z

   .  (3.36) 

 

Relațiile (3.35) șI (3.36) reprezintă ecuația celor două rotiri, respective 
ecuația celor două săgeți. Pe baza acestora pot fi determinate deplasările unei 
secțiuni cunoscând deplasările dintr-o altă secțiune a grinzii.  

 

Aplicația 3.9 

Se consideră grinda din figura 3.13 solicitată de o forță concentrată qa  la 

jumătatea deschiderii și o forță distribuită, de intensitate q  disitribută pe 

toată deschiderea sa.  

 

Rezolvare: 

Aplicând ecuația celor două rotiri pe intervalul A - , rezultă: 

 

zEI

A12
12   

sau:                                 
zEI

A12
10    
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qa 
q 

a a 

A B 
 

0,5qa2 0,5qa2 

+ 

+ 

 
Figura 3.13 

 

și înlocuind avem:  

zz

A
EI

papapa

EI 12

7

23

2

22

11 333

1 







  . 

 

Aplicând ecuația celor două rotiri pe intervalul   - B, rezultă: 

 

2
21

1211 v
EI

S
lv

z

     sau 
z

B

EI

S
v 1

1 00   

 

și înlocuind obținem: 

    

zz EI

pa
a

pa
a

pa

EI
v

8

3

8

5

23

2

3

2

22

11 433

1 







 . 

 

3.3.3. Ecuația celor trei săgeți (Ecuația lui Clapeyron) 

 

 Se consideră grinda din figura3.14, cu secțiune variabilă în trepte, 
încărcată în reazemul din punctul B  cu un moment încovoietor și forțe 
tăietoare concentrate iF  și distribuite q , rezultând o stare simplă plană de 

încovoiere.  
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A 

F1 q1 q2 

l1 l2 

 v1 v2 
2 

I1  I2 v3  

Fn 
MB 

B 

M1 M2 M3 

Mi = p* 

M*
2  M*

1  

T*
1  

T*
1  

M*
2  M*

3  

M1  

M2  M2  

T*
2  

M3  d1  

d3  

T*
3  

A2  
A1  

 
 

Figura 3.14 

 

După trasarea diagramei de momente de încovoiere, aceasta se 

transformă în forță fictivă distribuită p . Pe grindă se consideră două zone 

delimitate de punctele ,  și , care au lungimile 1l  și 2l  și momentele de 

inerție axiale constante pe intervale 1I  și 2I . 

Diagramele de încovoiere și implicit forțele fictive distribuite se descompun în 
două triunghiuri corespunzătoare momentelor încovoietoare 1M , 2M  și 3M  și 

respectiv două suprafețe de arii 1A  și 2A , corespunzătoare sarcinilor aplicate 

pe aceste două regiuni. 

Pentru cele două porțiuni  -  și  -  se scriu ecuațiile de echilibru: 

 

0;0 2121211   MlTSMMi ;  (3.37) 

 

0;0 3232223   MSlTMMi ,  (3.38) 

 

unde 12S  reprezintă momentul static al suprafeței sarcinii fictive aplicată în 

porțiunea  -  în raport cu secțiunea  , iar 23S  reprezintă momentul static 
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al suprafeței sarcinii fictive aplicată în porțiunea  -   în raport cu secțiunea 
. 

 Împărțind ecuația de echilibru (3.37) cu cantitatea 11lEI  și ecuația de 

echilibru (3.38) cu cantitatea 22lEI  rezultă: 

 

11

12

11

12

1

1

lEI

S

lEI

MM

EI

T







,   (3.39) 

 

22

23

22

23

2

2

lEI

S

lEI

MM

EI

T







   (3.40) 

 

și ținând cont de relațiile stabilite la metoda grinzilor fictive, rezultă: 

 

11

12

1

12
2

lEI

S

l

vv



 ,    (3.41) 

 

22

23

2

23
2

lEI

S

l

vv



 .    (3.42) 

 

 Din egalarea relațiilor (3.41) și (3.42) se obține: 

 

22

23

2

23

11

12

1

12

lEI

S

l

vv

lEI

S

l

vv






 

 

sau    
22

23

11

12

2

32

1

12

lEI

S

lEI

S

l

vv

l

vv






.  (3.43) 

 

Cosiderând notațiile din figura 3.14 momentele statice din relația 
(3.43) sunt egale cu: 

 
















.
323

2

2

;
3

2

232

223222
3232

12111
1112

1

llMllM
dAS

lMllM
dAS

l

  (3.44) 
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 Introducând relațiile (3.44) în relația (3.43) rezultă ecuația celor trei 
săgeți (ecuația lui Clapeyron): 

 


























 




22

32

11

11

2

23

2

2

1

1
2

1

11

2

32

1

12 626
Il

dA

Il

dA

I

lM

I

l

I

l
M

I

lM

l

vv

l

vv
E (3.45) 

 

 În cazul în care bara este constantă pe toată lungimea sa ( EIEIEI  21 ), 

ecuația (3.45) devine: 

 

  















 




2

32

1

11
2321211

2

32

1

12 626
l

dA

l

dA
lMllMlM

l

vv

l

vv
E  (3.46) 

 

Aplicația 3.10 

Se consideră grinda din figura 3.15 cu o secțiune variabilă și simplu rezemată 
la capete. Grinda este solicitată cu o forță F  mijlocul deschiderii ei. Se cere să 
se calculeze săgeata în punctul C . 

 

 

I1 

 

B 

l/2 
 

l/2 

A 
I2 

F 

C 

 
Figura 3. 15 

 

Rezolvare: 

Ecuația celor trei săgeți (3.46) scrisă pentru prezenta problemă are forma: 

 

1 2

6 0,5 2 0,5
0,5 0,5 2 2
C A C B

A C B

v v v v l l
E M l M M l

l l I I

   
      

   
 

 

unde: 









0;4;0

;0;0 31

BCA MFlMM

vv
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Înlocuind valorile de mai sus în ecuația celor trei săgeți, se obține: 

 




















21 224
2

5,05,0
6

I

l

I

lFl

l

v

l

v
E CC  

 

de unde rezultă:   
21

21
3

2
96 II

II

E

Fl
v


 . 

 

Pentru III  21  se obține:  
EI

Fl
v

48

3

2   

 

3.3.4. Principiul suprapunerii de efecte 

 

Principiul suprapunerii de efecte se bazează pe faptul că tensiunea 
rezultantă într-un system supus la acțiunea mai multor încărcări externe este 
egală cu suma tensiunilor care apar dacă s-ar aplica separat multor încărcările 
externe. Principiul poate fi utilizat pentru calculul deformațiilor grinzilor 
aflate sub acțiunea unor încărcări complexe. 

Deformarea totală, săgeată și/sau rotire, este egală cu suma acestora ca 
șI cnd acestea s-ar aplica individual iar valorile se deformațiilor se adună sau 
se scad.  

 

Aplicația 3.11 

Se consideră grinda din figura 3.16 încăcată în punctual B  cu o forță 
concentrată F  șI o forță distribuită de intesitate LFq . Se cere să se 

determine rotirea șI săgeata în punctul B . 

 

Răspuns: 

Încărcarea totală se împarte în două încărcări simple (două stări de încărcare) 
(Figura 3.16,a și b). 

 pentru cazul 1 de încărcare (figura 3.16,a), săgeata este 
z

a
IE

qL
v

8

4

,1  , iar 

rotirea este 
z

a
EI

qL

6

3

,1  ; 
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L 

q=F/L 

 
O 

EIz 

 

 

F 

F 

q 

 

 

x 

a) 

b) 

 
Figura 3.16 

 

 pentru cazul 2 de încărcare (figura 3.16,b), săgeata este 
z

b
EI

FL
v

3

3

,1  , iar rotirea 

este 
z

b
EI

FL

2

2

,1  . 

Combinând valorile, rezultă: 
zz

ba
EI

FL

IE

qL
vvv

38

34

,1,11   

zz

ba
EI

FL

IE

qL

26

23

,1,11    

 

 pentru cazul particular  
L

F
q  rezultă: 

















.
3

2

;
24

11

2

1

3

1

z

z

EI

FL

IE

FL
v



 

 

 

3.3.5. Deformația grinzilor solicitate la încovoiere oblică sau 
strâmbă 
 

În cazul încovoierii oblice sau strâmbe momentul încovoietor este un 
vector orientat de-a lungul axei centrale dar nu și după axele principale de 
inerție (figura 3.17).  
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
Miy 

Miz 



z O 

y 


v 

w 

Axa  
neutră 



Mi 

 
Figura 3.17 

 

Momentul încovoietor iM  se poate descompune după axele principale 

de inerție: izM  și iyM .  

Considerând că momentul de încovoiere iM  face un un,ghi   cu axa 

Oz  (figura 3.17), proiecțiile momentului de încovoiere au expresiile: 

 









.sin

;cos





iiz

iiy

MM

MM
   (3.47) 

 

Plecând de la considerentul că fibra medie deformată în cazul 
încovoierii oblice este plană și planul fibrei medii deformate este 
perpendicular pe planul neutru, pe baza ecuației fibrei medii deformate avem: 

 
2

2 2

2

2 2

1
;

1
.

y iz zy iy

z y zy

z iy zy iz

z y zy

I M I Md v

dx E I I I

I M I Md w

dx E I I I

 





  
 

   (3.48) 

 



REZISTENȚA MATERIALELOR METODE ENERGETICE DE CALCUL A DEFORMAȚIILOR 

 

94 

METODE ENERGETICE DE 
CALCUL A 
DEFORMAȚIILOR 
GRINZILOR DREPTE 

4 
 

 

 

 

 

4.1. Energia potențială de deformație. Teorema lui 
Clapeyron 
 

Se consideră un corp solid deformabil oarecare asupra căruia se aplică 
un sistem de forțe și cupluri. Forțele și cuplurile dau un lucru mecanic denumit 
lucru mecanic exterior L. 

Calculele se realizează pe baza următoarelor ipoteze: 

 materialul este considerat elastic, omogen și izotrop; 

 încărcarea este până la limita de elasticitate, având o comportare 
perfect elastică fiind valabilă legea lui Hooke; 

 aplicarea forțelor și momentelor exterioare se face static; 

 sunt neglijate pierderile de lucru mecanic datorate variațiilor 
detemperatură, frecărilor interne din material și a frecărilor din 
elementelor de legătură (reazeme, articulații, încastrări).  

 În cazul în care, forțele și cuplurile se aplică static, iar materialul din 
care este realizat corpul este liniar-elastic, atunci lucrul mecanic exterior este 
dat de relația: 

 

2 2
i i i iF v C

L


   ,   (4.1) 

unde iF  și iC  reprezintă forțele și cuplurile exterioare care acționează asupra 

corpului iar iv  și i  reprezintă proiecția săgeții și a rotirii pe direcția forței, 

respectiv a cuplului. 
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 Ca urmare a acțiunii forțelor și cuplurilor în interiorul corpului apar 
tensiuni normale   și tangențiale   deformarea sa ducând la înmagazinarea 
unei energii potențiale denumită energie de deformație sau lucru mecanic 
interior U. 

Teorema lui Clapeyron – pentru un corp solid aflat în repaus, lucrul mecanic al 
forțelor exterioare este egal cu energia de deformație acumulată.  

 Energia de deformație înmagazinată în corp poate fi calculată, în funcție 
de tensiunile normale   și tangențiale  , cu relația: 

 

2 2
V V

U dV dV
 

   .   (4.2) 

 

 Ținând cont de legea lui Hooke, scrisă pentru cele două tensiuni: 

 

;

,

E

G

 

 





    (4.3) 

 

și înlocuind aceste relații în (4.2) rezultă: 

 
2 2

2 2
V V

U dV dV
E G

 
   .   (4.4) 

 

 Considerând o bară dreaptă, de lungime l  pentru diferitele solicitări 
simple rezultă următoarele relații de calcul: 

 

a) Solicitarea de tracțiune/compresiune  

Tensiunea normală este 
N

A
   și înlocuind-o în relația (4.4) rezultă: 

 
2 2 2

22 2 2
V l A l

N N
U dV dAdx dx

E EA EA


     .  (4.5) 

 

b) Solicitarea de forfecare pură 

Tensiunea tangențială este 
T

A
   și înlocuind-o în relația (4.4) rezultă: 
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2 2 2

22 2 2
V A l l

T T
U dV dAdx dx

G GA GA


     .  (4.6) 

 

Pentru un calcul mai exact se poate folosi relația lui Juravski rezultând: 

 
2

21

2 2
z

zl A l

TS T
U dAdx dx

G bI GA


 
  

 
  , (4.7) 

 

unde coeficientul   depinde de forma tensiunii transversale. Astfel, pentru 
secțiunea dreptunghiulară 1,2  , iar pentru secțiunea circulară 1,185  . 

 

c) Solicitarea de torsiune 

Tensiunea tangențială este t

p

M r

I
   și înlocuind-o în relația (4.4) rezultă: 

2
2 2

2

2

1

2 2 2
t t t

p p pl A l A l

M r M M
U dAdx dx r dA dx

G I GI GI

 
    

 
    ; (4.8) 

 
d) Solicitarea de încovoiere 

Tensiunea normală este calculată cu relația lui Navier fiind i

z

M
y

I
   și 

înlocuind-o în relația (4.4) rezultă: 

 
2

2 2
2

2

1

2 2 2
i i i

z z zl A l A l

M y M M
U dAdx dx y dA dx

E I EI EI

 
   

 
    . (4.9) 

 

 Pe baza relațiilor (4.5) ÷ (4.9) energia de deformație totală, pentru o 
solicitare compusă, este dată de relația: 

 
2 22 2

2 2 2 2
t i

p z

M MN T
U dx dx dx dx

EA GA GI EI
          (4.10) 

 

 Conform relației (4.10) rezultă că, pentru fiecare solicitare simplă, 
energia de deformație poate fi calculată după formula: 
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 
2

sec

2 mod

efort tional lungime
U

ulul de rigiditate





  (4.11) 

 

 Modulele de rigiditate pentru cele patru solicitări simple sunt: 

Solicitare întindere/compresiune forfecare torsiune încovoiere 

Modul de 
rigiditate 

EA  GA  
pGI  zEI  

 

 Comparând valorile energie de deformație pentru fiecare formă de 
solicitare simplă se poate specifica faptul că, în cazul solicitărilor de încovoiere 
și de torsiune acestea sunt mai mari comparativ cu solicitările simple de 
tracțiune/compresiune și forfecare. Ca urmare, în aplicații se pot considera 
numai solicitările de încovoiere și torsiune. De remarcat este faptul că, în cazul 
aplicațiilor programelor specializate de calcul sunt considerate toate cele 
patru solicitări. 

 

Exemplul 4.1 

Se consideră o bară dreaptă de lungime l  și secțiune pătrată de latură 
„ a ” asupra căreia acționează o forță axială egală cu F  și o forță tăietoare de 
aceeași valoare F  (figura4.1). Se cere să se calculeze energiile de deformație 
pentru fiecare caz în parte și să se determine raportul dintre acestea. Se va 
considera că lungimea barei este 10l a  iar coeficientul 1,2  . 

 

 

F 
F 

10a 
 

 

Figura 4.1 

 

Rezolvare: 

Eforturile secționale într-o secțiune oarecare sunt N F , T F  și iM Fx . 

Expresiile energiilor de deformație sunt: 

a) Energia de deformație rezultată din solicitarea de tracțiune este: 
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2 2 2

1 2

10 5

2 2

N l F a F
U

EA Ea Ea
    ; 

 

b) Energia de deformație rezultată din solicitarea de forfecare este: 

 
2 2 2

2 2

1,2 10 6

2 2

T l F a F
U

GA Ga Ga
    ; 

 

c) Energia de deformație rezultată din solicitarea de încovoiere este: 

 

 
2 2 3 2 3 2 3 2

2

3 4

00 0

1 1000 2000

2 2 2 3 2
6

12

l l l

i

z z z

M F x F l F a F
U dx Fx dx

aEI EI EI EI Ea
E

        . 

 

Considerând relația de legătură dintre modulele de elasticitate: 
2,6E G  rezultă următoarele rapoarte: 

 
2

3
2

1

2000
400

5

U F Ea

U Ea F
   ; 

2
3

2
2

2000 2,6
866,6

6

U F Ea

U Ea F
   . 

 

Așa cum rezultă și din rapoartele de mai sus, influența solicitării de 
încovoiere (și, în particular, și a solicitării de torsiune) este mult mai mare 
comparativ cu solicitările de tracțiune/compresiune și forfecare. 

 

4.2. Teoremele reciprocității 
 

 Se consideră o grindă elastică AB  încărcată cu două forțe 1F  și 2F  în punctele 

 și  (Figura 4.2,a). Deformațiile în dreptul punctelor, urmare a aplicării forțelor, 

sunt 1  și 2 . 

 Se consideră grinda încărcată cu sarcinile exterioare 1F  și 2F , energia 

de deformație fiind dată de relația (4.13), scrisă sub forma: 

 1 2,L U U F F  ; 

 Se consideră cazul în care se aplică numai forța 1F  rezultând deformații 

11  și 21 , în punctele  și  (figura 4.2,b). Deformațiile apărute în 

cele două punct pot fi scrise sub forma: 
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11 11 1F   și 21 21 1F     (4.12) 

 

unde 11  și 21  poartă numele de coeficienți de influență; 

 Se consideră, apoi, cazul în care se aplică numai forța 2F  rezultând 

deformații 12  și 22 , în punctele  și  (figura 4.2,c). Deformațiile 

apărute în cele două punct pot fi scrise sub forma: 

 

12 12 2F   și 22 22 2F     (4.13) 

 

unde 12  și 22  sunt coeficienți de influență; 

 

  

F1 A B 
F2 

1 2 
  

 
a) 

 

  

F1 

11 21 

A B   

 
b) 

 

  

F2 

12 22 

A B   

 
c) 

 

Figura 4.2 

  

Aplicând principiul suprapunerii de efecte, pe baza relațiilor (4.12) și 
(4.13) se obține: 

 



REZISTENȚA MATERIALELOR METODE ENERGETICE DE CALCUL A DEFORMAȚIILOR 

 

100 

1 11 12 11 1 12 2F F          (4.14) 

și      

2 21 22 21 1 22 2F F          (4.15) 

 

Observație 

 Coeficienții de influență reprezintă deformațiile din punctele  și  
atunci când în punctele respective sunt aplicate, pe rând, forțe unitare. Aceștia 
sunt caracteristici ale grinzii A B . 

 Pentru calcularea lucrului mecanic realizat de forțele 1F  și 2F       

(figura 4.3) și implicit a energiei de deformație se procedează astfel: 

 

  

F1 

11 21 

A B   

 
a) 

 

  

F2 

11 
22 

A B 
F1 
  

12 

 
b) 

 

Figura 4.3 

 

 se presupune că se aplică, static, pentru început forța 1F , în 

punctul  (figura 4.3,a). Pe baza relației deformării 11  din (4.12) 

rezultă: 

 

2
1 1 11 1 11 1 11 1

1 1 1
( )

2 2 2
L F F F F       (4.16) 

 

 în continuare se aplică, static, forța 2F , în punctul, forța 1F  

rămânând aplicată la valoarea ei maximă (figura 4.3,b). Pe baza 
relației deformării 22  din (4.13) rezultă: 
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2
2 21 22 2 22 2 22 2

1 1 1
( )

2 2 2
L F F F F       (4.17) 

 

 urmare a aplicării forței 2F , punctul  se deplasează cu 

cantitatea 12 . Ca urmare, forța 1F  efectuează un lucru mecanic 

care, pe baza relației deplasării 12  din (4.13), este figura 4.4,a): 

 

12 1 12 1 12 2 12 1 2( )L F F F F F       (4.18) 

 

n 

a) 

 

F2 

2 
21 22  

 
b) 

Figura 4.4 

 

 Adunând relațiile (4.16), (4.17) și (4.18) și ținând cont că energia de 
deformare este egală cu lucrul mecanic al sarcinilor exterioere, se obține: 

 

2 2
1 1, 1 11 21 22 1 12 11 1 22 2 12 1 2

1 1 1 1

2 2 2 2
totalU L F F F F F F F             (4.19)  

 

 În mod similar se poate proceda și cu aplicarea, prima dată, a forței 2F  

în punctul  și apoi a forței 1F  în punctul  rezultând o relație de calcul 

similară cu (4.19): 

 

2 2
2 2, 11 1 22 2 21 1 2

1 1

2 2
totalU L F F F F        (4.20) 

 

 Ținând cont de faptul că lucrul mecanic dat de (4.19) și (4.20), și 
implicit și energiile interne de deformare, sunt aceleași, se boține egalitatea: 
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2 2 2 2
11 1 22 2 12 1 2 11 1 22 2 21 1 2

1 1 1 1

2 2 2 2
F F F F F F F F          , (4.21) 

 

din care rezultă: 

 

12 21  .    (4.22) 

 

 Relația (4.22) definește teorema reciprocității deplasărilor, teorema lui 
Maxwell: deplasările într-o secțiune oarecare „i” produsă de o forță unitară 
aplicată într-o secțiune „j” este egală cu deplasarea din secțiunea „j” produsă de 
o forță egală cu unitatea aplicată în secțiuna „i”. 

 Teorema lui Betti are următorul enunț: lucrul mecanic produs de 
sistemul de forte primar aplicat, care parcurge cu întreaga intensitate 
deplasările secundare, este egal cu lucrul mechanic produs  de sistemul de forte 
secundar, care parcurge cu întreaga intensitate deplasările primare. 

 

4.3. Teorema lui Castigliano 
 

 Ținând cont de teorema lui Clapeyron rezultă faptul că energia de 
deformație este o funcție dependentă de variabilele iF  (forțele și/sau cuplurile 

care compun încărcarea exterioară): 

 

 1 2 3, , , , , ,i nL U U F F F F F  .  (4.23) 

 

Pentru simplificarea calculelor se consideră grinda din figura 4.2,a 
pentru care relația de calcul a energiei interne de deformație este (4.19): 

 

2 2
11 1 22 2 12 1 2

1 1

2 2
U F F F F     . 

 

 Derivând relați în raport cu forța 1F  rezultă: 

 

2 2
11 1 22 2 12 1 2 11 1 12 2 1

1 1

1 1

2 2

U
F F F F F F

F F
    

   
       

   
 (4.24) 

 

 Considerând aceeași relație (4.19) în raport cu forța 2F  se obține: 
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2 2
11 1 22 2 12 1 2 12 1 22 2 2

2 2

1 1

2 2

U
F F F F F F

F F
    

   
       

   
 (4.25) 

 

 Pornind de la relațiile (4.24) și (4.25), în cazul unei structuri elastice 
încărcate cu un sistem de sarcini exterioare , forțe și/sau momente, notate 

generic cu  1 2 3, , , , , ,i nF F F F F , deformarea într-un punct „ j ”, unde este 

aplicată sarcina jF , măsurată de-a lungul direcției de acționare a sarcinii kF , 

poate fi calculată cu relația: 

 

j jk k

k

F  ,    (4.26) 

 

iar energia de deformare a structurii este calculată cu relația: 

 

1

2
ik i k

i k

U F F  .    (4.27) 

 

 Derivând relația (4.27) în raport cu forța jF  rezultă: 

 

1 1

2 2
jk k ij i

j k i

U
F F

F
 


 

   .  (4.28) 

 

 Ținând cont de egalitatea (4.22) scrisă pentru indicii „ i ” și „ j ”: 

 

ij ji  ,    (4.29) 

rezultă: 

1 1

2 2
jk k ji i jk k

j k i k

U
F F F

F
  


  

    .  (4.30) 

 

La modul general, deformarea într-un punct oarecare „ j ” se calculează 

cu relația: 
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e
j

j j

L U

F F

 
  

 
.   (4.31) 

 

Relația (4.31) reprezintă prima teoremă a lui Castigliano care 
statuează că: Derivata parțială a energiei de deformație în raport cu o sarcină 
oarecare jF  este egală cu deformarea corpului solid j  , produsă în dreptul și pe 

direcția sarcinii jF , atunci când corpul se încarcă, în mod static, cu un un sistem 

oarecare de foțe și cupluri (momente). 

Pe baza relației (4.31) pot fi făcute următoarele remarci: 

a) în cazul în care, se cere să se calculze deplasarea sau rotirea într-un 
punct oarecare unde nu există aplicate încărcări (forțe sau 
momente) pentru calculul deformațiilor se aplică, fictiv, o forță 0P  

sau un cuplu 0C  după care se calculează derivatele parțiale în 

raport cu forța fictivă sau cuplul fictiv în concordanță cu relația 

(4.31) 
0

e
j

L

P


 


 sau 

0

e
j

L

C


 


, după care forța fictivă sau cuplul fictiv 

sunt anulate; 

b) deplasarea relativă dintre două puncte poate fi calculată 
introducând în ambele puncte două forțe fictive 0P , egale și opuse 

ca direcție de acțiune.  

Considerând faptul că lucrul mecanic este egal cu energia potențială de 
internă de deformare, și ținând cont de teorema lui Castigliano definită prin 
relația (4.31), deformația într-un punct oarecare poate fi calculată cu relația: 

 

e b b t t
j

j j j z j p j

L M M M MN N T T
dx dx dx dx

F EA F GA F EI F GI F


   
     

          
(4.32) 

 
Observație 

 În cazul aplicării forței fictive 0P  sau a cuplului fictiv 0C , după ce se 

calculează derivata, în relația obținută se fac egale cu zero atît foța 0P  cât și 

cuplul 0C  adică: 

 

0
0 0

e
j

P

L

P


 
  

 
   sau 

0
0 0

e
j

C

L

C


 
  

 
.  (4.33) 
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Exemplul 4.2 

Se consideră grinda cotită din figura 4.5 de modul de elasticitate 
constant .zEI ct  În punctul  acționează o forță concentrată F . Se cere să se 

determine: 

a) deplasarea veriticală a punctului , 1v ; 

b) deplasarea orizontală a punctului , 1u ; 

c) rotirea punctului , 1 ; 

d) deplasarea verticală a punctului , 3v ; 

e) rotirea punctului  , 3 . 

 

 

2a 

2
a

 

3a 

F 

x 

x 
x 

 
 

 
 

 
Figura 4.5 

 

Rezolvare: 

a) deplasarea veriticală a punctului , 1v ; 

Având în vedere faptul că în punctul  există o forță concentrată F , 
derivarea lucrului mecanic exterior va fi făcută în raport cu această forță:  

 

1
i i

zl

M M
v dx

EI F




 . 

 

Ca urmare se va scrie pe fiecare porțiune în parte relația momentului 
încovoietor și se va deriva în raport cu forța concentrată F .  
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Interval Moment încovoietor 
Derivata  iM

F




 

Limite  

interval 

 -  
,1 2iM Fx

   x  0 2a  

 -  
,2 3 2iM F a

    2a  0 2a  

 -  
,3 4 (2 )iM F a x

     (2 )a x   0 3a  

 

Aplicând relația lui Castigliano, avem: 

 

  
2 2 3

1

0 0 0

32 2
3 2 2 3

2

0 0 0

3 3
3 3 3 3 3

(2 ) (2 )( )( ) 2 ( 2 )

4
4 4

3 2 3

8 149
8 12 9 18 9

3 3

a a a

z z z

aa a

z z z

z z

F a x a xFx x F a a
v dx dx dx

EI EI EI

Fx Fa x F x x
a x a

EI EI EI

F a Fa
a a a a a

EI EI

        
   

 
      

 

 
       

 

  

 

 

b) deplasarea orizontală a punctului , 2u ; 

Având în vedere faptul că în punctul  nu există nicio forță pe direcție 
orizontală, se introduce o forță fictivă 0P  (colorată în roșu – figura 4.6) și se 

scrie momentul încovoietor, pe fiecare interval în parte, ținând cont de această 
forță.  Derivarea se face în raport cu această forță. 
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2
a
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P0 

 
Figura 4.6 
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Observație 

Prin poziționarea forței 0P  (colorată în roșu), așa cum este în schița 

atașată, se presupune că deplasarea are loc în direcția de acțiune a forței (spre 
dreapta). 

 

Interval Moment încovoietor 
Derivata  

0

iM

P




 

Limite 
interval 

 -  
,1 2iM Fx

   0  0 2a  

 -  
,2 3 02iM F a P x

     x  0 2a  

 -  
,3 4 0(2 ) 2iM F a x P a

       2a  0 3a  

 

În continuarea calculului, forța fictivă se anulează 0( 0)P   și se 

consideră relațiile momentelor încovoietoare fără această forță 0P . Ca urmare, 

relația de calcul este: 

 

 
2 2 3

2

0 0 0 0

32
2 2 3 2 3

2

0 0

(2 ) 2( ) 0 2

2 2 4 2 9 25
2 6

2 2 2

a a a

i i

z z z zl

aa

z z z z z

F a x aM M Fx F a x
u dx dx dx dx

EI P EI EI EI

Fa x Fa x Fa Fa a Fa
ax a

EI EI EI EI EI

        
    



   
            

   

   
 

Faptul că valoarea iese negativă indică faptul că deplasarea punctului 
este în sens invers decât s-a considerat inițial (spre dreapta – direcția de 
acțiune a forței 0P ). 

 

c) rotirea punctului , 1 (figura 4.7); 

Deoarece în punctul  nu există niciun cuplu (moment) se introduce în 

punctul  un cuplu oarecare 0C  și se scrie momentul încovoietor, pe fiecare 

interval în parte, ținând cont de acest cuplu. Derivarea se face în raport cu 
acest cuplu. 
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2a 

2
a
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 
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C0 

 
Figura 4.7 

 

Observație 

Prin poziționarea cuplului 0C , așa cum este în schița atașată (colorat cu 

roșu), se presupune că rotirea are loc în direcția de acțiune a cuplului (în sens 
orar). 

 

Interval Moment încovoietor 
Derivata  

0

iM

C




 

Limite 
interval 

 -  ,1 2 0iM Fx C

    1  0 2a  

 -  ,2 3 02iM F a C

     1  0 2a  

 -  ,3 4 0(2 )iM F a x C

      1  0 3a  

În continuarea calculului, cuplul (momentul) fictiv se anulează 0( 0)C   

și se consideră relațiile momentelor încovoietoare fără aceast cuplu 0C . Ca 

urmare, relația de calcul este: 

 

 
2 2 3

1

0 0 0 0

32
2 2 2 2 2

2 2 2

0

0 0

(2 ) ( 1)( ) ( 1) 2 ( 1)

2 4 9 33
2 4 6

2 2 2 2 2

a a a

i i

z z z zl

aa

a

z z z z z

F a xM M Fx F a
dx dx dx dx

EI C EI EI EI

F x Fa F x F a a Fa
x ax a a

EI EI EI EI EI


           

    


   
           

   

   
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Faptul că valoarea iese pozitivă indică faptul că rotirea punctului este în 
sens orar, în sensul de acționare al cuplului 0C . 

 

d) deplasarea verticală a punctului , 3v  (figura 4.8); 

Având în vedere faptul că în punctul  nu există nicio forță pe direcție 
orizontală, se introduce o forță fictivă 0P  (colorată în roșu – figura 4.8) și se 

scrie momentul încovoietor, pe fiecare interval în parte, ținând cont de această 
forță. Derivarea se face în raport cu această forță. 

 

 

2a 

2
a

 

3a 

F 
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x 

x 

  

 
 

P0 

 
Figura 4.8 

 

Observație 

Prin poziționarea forței 0P  (colorată în roșu), așa cum este în schița 

atașată, se presupune că deplasarea are loc în direcția de acțiune a forței (spre 
dreapta). 

Interval Moment încovoietor 
Derivata  

0

iM

P




 

Limite 
interval 

 -  
,1 2iM Fx

   0  0 2a  

 -  ,2 3 2iM F a

    0  0 2a  

 -  ,3 4 0(2 )iM F a x P x

       x  0 3a  

 

În continuarea calculului, forța fictivă se anulează 0( 0)P   și se 

consideră relațiile momentelor încovoietoare fără această forță 0P . Ca urmare, 

relația de calcul este: 



REZISTENȚA MATERIALELOR METODE ENERGETICE DE CALCUL A DEFORMAȚIILOR 

 

110 

 
2 2 3

3

0 0 0 0

3
2 3 3

0

(2 ) ( )( ) 0 2 (0)

18
2

2 3

a a a

i i

z z z zl

a

z z

F a x xM M Fx F a
v dx dx dx dx

EI P EI EI EI

F x x Fa
a

EI EI

         
    



 
   

 

   
 

 

Având în vedere faptul că valoarea obținută este pozitivă, rezultă că 
deplasarea punctului  pe verticală este în jos, adică în sensul de acțiune al 
forței fictive 0P . 

 

e) rotirea punctului  , 3  (figura 4.9); 

Deoarece în punctul  nu există niciun cuplu (moment) se introduce în 

punctul  un cuplu oarecare 0C  și se scrie momentul încovoietor, pe fiecare 

interval în parte, ținând cont de acest cuplu. Derivarea se face în raport cu 
acest cuplu. 

 

Observație 

Prin poziționarea cuplului 0C , așa cum este în schița atașată (colorat cu 

roșu – figura 4.9), se presupune că rotirea are loc în direcția de acțiune a 
cuplului (în sens anti orar). 
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Figura 4.9 
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Interval Moment încovoietor 
Derivata  

0

iM

C




 

Limite 
interval 

 -  ,1 2iM Fx

   0  0 2a  

 -  ,2 3 2iM F a

    0  0 2a  

 -  ,3 4 0(2 )iM F a x C

      1  0 3a  

 

În continuarea calculului, cuplul (momentul) fictiv se anulează 0( 0)C   

și se consideră relațiile momentelor încovoietoare fără aceast cuplu 0C . Ca 

urmare, relația de calcul este: 

 

 
2 2 3

3

0 0 0 0

3
2 2 2

2

0

(2 ) (1)( ) (0) 2 (0)

9 21
2 6

2 2 2

a a a

i i

z z z zl

a

z z z

F a xM M Fx F a
dx dx dx dx

EI C EI EI EI

F x F a Fa
ax a

EI EI EI


        

    


   
          

   

   

 

Faptul că valoarea iese negativă indică faptul că rotirea punctului este 
în sens orar, în sens invers sensului adoptat pentru cuplul 0C . 

 

4.4. Teorema lucrului mecanic minim. Teorema lui 
Menabrea 
 

 În cazul sistemelor nedeterminate valorile necunoscute sunt forțele sau 
momentele din legături (forțele/momentele de reacțiune 1 2 3, , ,... , nX X X X ). 

Deformațiile (deplasări și rotiri) corespunzătoare acestor reacțiuni sunt egale 
cu zero și ținând cont de relația (4.31)obținem: 
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1

2

0 ;

0 ;

0 .

e

e

e

n

L

X

L

X

L

X


 


 








 

   (4.34) 

 

 Considerând că lucrul mecanic este o funcție dependentă și de 
reacțiuni: 

 

 1 2, ,... , ,... ,e i nL f X X X X ,   (4.35) 

 

rezultă din relațiile (4.34), care reprezintă derivatele parțiale ale lucrului 
mecanic, că lucrul mecanic are o valoare extremă în raport cu reacțiunile 

 

Observație 

Pe de altă parte, lucrul mecanic conform relației este pozitiv și ținând 
cont de considerentele matematice rezultă că valorile extreme raportate la 
reacțiuni sunt valor minime. 

Pe baza celor de mai sus rezultă teorema lui Menabrea: Reacțiunile 
sistemelor nedeterminate au o astfel de valoare încât lucrul mecanic de 
deformare al întregului sistem este minim. 

 Aceași procedură poate fi aplicată pentru sistemele nedeterminate 
interior. În acest caz, drept valori necunoscute sunt considerate forțele axiale, 
tăietoare, momentele de încovoiere sau torsiune.  

 

4.5. Metoda sarcinii unitare. Relația Mohr-Maxwell 
 

 Așa cum s-a determinat în subcapitolul 4.3, deplasarea într-un punct 
oarecare al unei structuri poate fi calculată cu relația lui Castigliano (4.32): 

 

e b b t t
j

j j j z j p j

L M M M MN N T T
dx dx dx dx

F EA F GA F EI F GI F


   
     

          
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 Fiecare sarcină exterioară influențează mărimea eforturilor secționale. 
Eforturile secționale, dintr-o secțiune transversală oarecare, pot fi exprimate 
ca funcții liniare și omogene de solicitări exterioare: 

 

1 1 2 2 3 3

1 1 2 2 3 3

,1 1 ,2 2 ,3 3 , ,

,1 1 ,2 2 ,3 3 , ,

;

;

;

,

j j r r

j j r r

t t t t t j j t r r

î î î î î jk j î r r

N n F n F n F n F n F

T t F t F t F t F t F

M m F m F m F m F m F

M m F m F m F m F m F

      


      


      
       

 (4.36) 

 

unde , ,, , ,j j t j î jn t m m  sunt coeficienți de influență. 

 Semnificația fizică a coeficienților de influență rezultă din considerarea 
unei sarcini exterioare, oarecare kF , egală cu unitatea ( 1kF  ) restul fiind egale 

cu zero. Ca urmare, relațiile (4.36) devin: 

 

,

,

;

;

;

.

j

j

t t j

i î j

N n

T t

M m

M m








 

    (4.37) 

 

 Din (4.37) rezultă faptul că, , ,, , ,j j t j î jn t m m  sunt eforturile secționale 

dintr-o secțiune curentă dezvoltate atunci când se aplică o forță egală cu 
unitatea în același punct de aplicație și pe aceeași direcție ca și forța jF . În 

mod similar, sunt definiți și ceilalți coeficienți. 

 Derivând relațiile (4.36) în raport cu sarcina exterioară jF  se obțin 

relațiile: 

,

,

;

;

;

.

j

k

j

k

t
t j

k

i
î j

k

N
n

F

T
t

F

M
m

F

M
m

F


 


 





 

 

 

 

  (4.38) 
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 Țințnd cont de (4.38), relația de calcul a deformațiilor (4.32) rezultă o 
nouă formulă de calcul a acestora: 

 

, ,j j t t j iz î j

j

p zl l l l

Nn T t M m M m
dx dx dx dx

E A G A G I E I
           . (4.39) 

 

 Relația (4.39) mai este cunoscută și sub denumirea de relația lui Mor-
Maxwell. Pentru aplicarea ei se parcurg următoarele etale: 

 Etapa 1 – se introduce o sarcină exterioară virtuală unitară 1jF   

(forță sau moment) în punctul și după direcția deformației ce se 
dorește a fi calculată; 

 Etapa 2 – se determină relațiile eforturilor secționale , , ,t iN T M M  

produse de încărcarea exterioară reală, pe fiecare interval în parte; 

 Etapa 3 - se determină relațiile eforturilor secționale , ,, , ,j j t j î jn t m m  

produse de încărcarea exterioară unitară 1jF  , pe fiecare interval 

în parte; 

 Etapa 4 – se calculează integralele din relația (4.39). 

În sinteză, cele două metode, Castigliano și Mohr-Maxwell, se definesc 
prin aspectele prezentate în tabelul 4.1. 

 

Tabelul 4.1 

Metoda de 
calcul 

Încărcarea din punctul de calcul al deformației 

Existența sarcinii 
exterioare jF  

Inexistența sarcinii exterioare jF  

 

 

Castigliano 

Se realizează derivata 
eforturilor secționale în 
raport cu sarcina 
exterioară jF  

Se introduce o sarcină exterioare 
fictivă jQ  (forță sau moment), se 

face derivarea eforturilor secționale 
în raport cu jQ  iar în calculul 

integralelor sarcina fictivă jQ  se 

anulează. 

Metoda 
forțelor 
unitare 

Se introduce o sarcină exterioară unitară 1jQ   (forță sau 

moment) în punctul de calcul a deformației și se aplică relația 
(4.39) 
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Exemplul 4.2 prin Metoda Mohr-Maxwell (figura 4.5) 

Se reconsideră bara cotită din figura 4.5. În cazul metodei Mohr 
Maxwell, în punctul și pe direcția deformării de pun încărcări unitare: 

a) Forță unitară pentru calculul deplasării; 

b) Cuplu unitar pentru determinarea rotirii. 

După introducerea încărcărilor unitare se înmulțesc momentele reale 

iM  cu cele unitare 1im :   

 

1i i

zl

M m
dx

EI
   

 

a) deplasarea verticală a punctului , 1v  (figura 4.10); 

Se introduce o forță egală cu unitatea în acest punct (Figura 4.10,b - 
colorată în roșu). 

Ca urmare se va scrie pe fiecare porțiune în parte relația momentului 
încovoietor real și a celui unitar 1 . Grinda este parcursă prin interiorul ei, 
deplasându-se de la dreapta la stânga. 
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a) 
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b) 

 

Figura 4.10 
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Interval Moment încovoietor real Moment unitar de 
încovoiere 1m  

Limite 
interval 

 -  
,1 2iM Fx

   1 x   0 2a  

 -  
,2 3 2iM F a

    1 2a   0 2a  

 -  
,3 4 (2 )iM F a x

     1 (2 )a x    0 3a  

 

Aplicând relația Mohr-Maxwell, avem: 

 

  
2 2 2

1

0 0 0

32 2
3 2 2 3

2

0 0 0

3 3
3 3 3 3 3

(2 ) 1 (2 )( )( 1 ) 2 ( 1 2 )

4
4 4

3 2 3

8 149
8 12 9 18 9

3 3

a a a

z z z

aa a

z z z

z z

F a x a xFx x F a a
v dx dx dx

EI EI EI

Fx Fa x F x x
a x a

EI EI EI

F a Fa
a a a a a

EI EI

           
   

 
      

 

 
       

 

  

 

b) deplasarea orizontală a punctului , 1u ; 

- se introduce o forță egală cu unitatea în acest punct (colorată în roșu -     
figura 4.11,b) 
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Figura 4.11 
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Interval Moment încovoietor real Moment unitar de 

încovoiere  1im  

Limite 
interval 

 -  FxMi 21,  0  a20   

 -  aFMi 232,   x1  a20   

 -  )2(43, xaFMi   a21   a30   

 

Aplicând relația Mohr-Maxwell, avem: 

 

 
2 2 3

1
2

0 0 0

32
2 2 3 2 3

2

0 0

(2 ) (1 2 )( ) 0 2 (1 )

2 2 4 2 9 25
2 6

2 2 2 2

a a a

i i

z z z zl

aa

z z z z z

F a x aM m Fx F a x
u dx dx dx dx

EI EI EI EI

Fa x Fa x Fa Fa a Fa
ax a

EI EI EI EI EI

         
    

   
            

   

   

 

Faptul că valoarea iese negativă indică faptul că deplasarea punctului 
este în sens invers decât s-a considerat inițial (spre dreapta – direcția de 
acțiune a forței unitare 1). 

 

c) rotirea punctului , 1 ; 

- se introduce un cuplu unitar în punctul  

 

 

2a 

2
a

 

3a 

F 

x 

x 

x 

  

 
 

 
a) 

 

 

2a 

2
a

 

3a 

x 

x 

x 

  

 
 

1 

 
b) 

Figura 4.12 
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Interval Moment încovoietor real Moment unitar de 
încovoiere  1im  

Limite 
interval 

 -  ,1 2iM Fx

   1  0 2a  

 -  ,2 3 2iM F a

    1  0 2a  

 -  ,3 4 (2 )iM F a x

     1  0 3a  

 

Ca urmare, pe baza relației de calcul Mohr-Maxwell, avem: 

 

 
2 2 3

1
1

0 0 0

32
2 2 2 2 2

2 2 2

0

0 0

(2 ) ( 1)( ) ( 1) 2 ( 1)

2 4 9 33
2 4 6

2 2 2 2 2

a a a

i i

z z z zl

aa

a

z z z z z

F a xM m Fx F a
dx dx dx dx

EI EI EI EI

F x Fa F x F a a Fa
x ax a a

EI EI EI EI EI


          

    

   
           

   

   

 

Faptul că valoarea iese pozitivă indică faptul că rotirea punctului este în 
sens orar, în sensul de acționare al cuplului unitar 1 . 

 

d) deplasarea verticală a punctului , 3v ; 

- se introduce o forță unitară în punctul  (figura 4.13) 

 

 

 

2a 

2
a

 

3a 

F 

x 

x 

x 

  

 
 

 
a) 

 

 

2a 

2
a

 

3a 

x 

x 

x 

  

 
 

1 

 
b) 

Figura 4.13 
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Interval Moment încovoietor real Moment unitar de 
încovoiere  1im  

Limite 
interval 

 -  
,1 2iM Fx

   0  0 2a  

 -  ,2 3 2iM F a

    0  0 2a  

 -  ,3 4 (2 )iM F a x

     1 x   0 3a  

 

Pe baza relației Mohr-Maxwell avem: 

 

 
2 2 3

1
3

0 0 0

3
2 3 3

0

(2 ) ( 1 )( ) 0 2 0

18
2

2 3

a a a

i i

z z z zl

a

z z

F a x xM m Fx F a
v dx dx dx dx

EI EI EI EI

F x x Fa
a

EI EI

         
    

 
   

 

   

 

 

Având în vedere faptul că valoarea obținută este pozitivă, rezultă că 
deplasarea punctului  pe verticală este în jos, adică în sensul de acțiune al 
forței unitare 1 . 

 

e) rotirea punctului , 3 . 

- se introduce în punctul  un cuplu unitar (figura 4.14) 

 

 

2a 

2
a

 

3a 

F 

x 

x 

x 

  

 
 

 
a) 

 

 

2a 

2
a

 

3a 

x 

x 

x 

  

 
 

1 

 
b) 

Figura 4.14 
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Interval Moment încovoietor real Moment unitar de 
încovoiere  1im  

Limite 
interval 

 -  ,1 2iM Fx

   0  0 2a  

 -  ,2 3 2iM F a

    0  0 2a  

 -  ,3 4 (2 )iM F a x

     1  0 3a  

 

Pe baza relației Mohr-Maxwell avem: 

 

 
2 2 3

3

0 0 0 0

3
2 2 2

2

0

(2 ) (1)( ) (0) 2 (0)

9 21
2 6

2 2 2

a a a

i i

z z z zl

a

z z z

F a xM M Fx F a
dx dx dx dx

EI C EI EI EI

F x F a Fa
ax a

EI EI EI


        

    


   
          

   

   

 

Faptul că valoarea iese negativă indică faptul că rotirea punctului este 
în sens orar, adică în sens invers sensului adoptat pentru cuplul unitar. 

 

Exemplul 4.3 

Se consideră structura din Figura 4.15 de secțiune constantă pătrată de latură 
b . Structura este încastrată în punctul  și liberă în punctele  și . În 
punctul  acționează o forță egală cu 2F . 

Se cere să se calculeze: 

a) Rotirea în punctul  ( 1 ); 

b) Deplasarea orizontală a punctului  ( 2u ); 

c) Deplasarea verticală a punctului  ( 2v ). 

 

Rezolvare 

Se vor folosi metoda Castigliano și metoda forțelor (Mohr-Maxwell) 
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2F 

 

 

 

 

2a 

x 

 

a
 

x 


 


 x 

a
 

 
Figura 4.15 

 

a) Determinarea rotirii în punctul  

 

Metoda Castigliano Metoda forțelor (Mohr-Maxwell) 

Deoarece în punctul  nu există 
moment se va introduce un moment 
fictiv 0C . 

Se introduce un moment unitar în 
punctul . 

 

2F 

 

 

 

 

2a 

x 

 

a
 

x 


 


 x 

a
 

C0 

 
Figura 4.16 

 

 

 

 

 

2a 

x 

 

a
 

x 


 


 x 

a
 

1 

 
Figura 4.17 

Se scriu momentele încovoietoare pe 
fiecare porțiune (figura 4.16) și se 
derivează în raport cu momentul fictiv 

0C . 

Se scriu momentele încovoietoare pe 
fiecare porțiune datorate încărcării 
reale (conform figurii 4.15) și 
momentele rezultate din acțiunea 
momentului unitar introdus în 
punctul  (figura 4.17). 
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interval 
iM  

0

iM

C




 

limite interval 
iM  1im  limite 

 -  
0C  1 0 a   -  0  1  0 a  

 -  2Fx  0 0 a   -  2Fx  0 0 a  

 -  
02Fa C  1 0 2a   -  2Fa  1  0 2a  

 

Se calculează rotirea în punctul  conform cu relațiile de calcul: 

 Metoda Castigliano 

 
20

2
2

1 0
0 0 0 0

0 1 2 0 2 1 2 4
a a

ai i

z z z z z z

M M Fx Fa F Fa
dx dx dx dx x

EI C EI EI EI EI EI


   
     

     

 

 Metoda forțelor (Mohr_Maxwell) 

 
20

2
21

1 0

0 0 0

0 1 2 0 2 1 2 4
a a

ai i

z z z z z z

M m Fx Fa F Fa
dx dx dx dx x

EI EI EI EI EI EI


  
          

 

b) Deplasarea orizontală a punctului  ( 2u ); 

 

Metoda Castigliano Metoda forțelor (Mohr-Maxwell) 

Deoarece în punctul  există o forță 
oarecare (de intensitatea 2F ) se va 
considera forța existentă ca fiind o 
forță oarecare P  (2F P ). 

Se introduce o forță unitară în 
punctul . 
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2F = P 

 

 

 

 

2a 

x 

 

a
 

x 


 


 x 

a
 

 
Figura 4.18 

 

 

 

 

 

2a 

x 

 

a
 

x 


 


 x 

a
 

1 

 
Figura 4.19 

Se scriu momentele încovoietoare pe 
fiecare porțiune (figura 4.18) și se 
derivează în raport cu forța P , după 
care în calculul relației forța P  este 
înlocuită cu 2F  

Se scriu momentele încovoietoare pe 
fiecare porțiune datorate încărcării 
reale (conform figurii 4.15) și 
momentele rezultate din acțiunea 
forței unitare introduse în punctul  
(figura 4.19). 

interval 
iM  iM

P




 

limite interval 
iM  1im  Limite 

 -  0  0 0 a   -  0  0  0 a  

 -  Px  x  0 a   -  2Fx  1 x  0 a  

 -  Pa  a  0 2a   -  2Fa  1 a  0 2a  

 

Se calculează deplasarea pe orizontală în punctul  conform cu relațiile de 
calcul: 

 Metoda Castigliano 

 
20 2

2

0 0 0 0 0

3 2 3
2

0

0

0 0 2 2

2 2 14

3 3

a a a a

i i

z z z z z z

a

a

z z z

M M Px x Pa a Fx x Fa a
u dx dx dx dx dx dx

EI P EI EI EI EI EI

Fx Fa Fa
x

EI EI EI

     
      



  

     

 

 Metoda forțelor (Mohr_Maxwell) 
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2
3 2 3

21
2 0

00 0 0

0 0 2 1 2 1 2 2 14

3 3

a a a a

ai i

z z z z z z z

M m Fx x Fa a Fx Fa Fa
u dx dx dx dx x

EI EI EI EI EI EI EI

    
         

 

c) Deplasarea verticală a punctului  ( 2v ). 

 

Metoda Castigliano Metoda forțelor (Mohr-Maxwell) 

Deoarece în punctul  nu există o 
forță verticală în punctul , se 
introduce o forță verticală fictivă 
oarecare 0P . 

Se introduce o forță unitară în 
punctul . 

 

2F 

 

 

 

 

2a 

x 

 

a
 

x 


 


 x 

a
 

2P0 

 
Figura 4.20 

 

 

 

 

 

2a 

x 

 

a
 

x 


 


 x 

a
 

1

 

Figura 4.21 

Se scriu momentele încovoietoare pe 
fiecare porțiune (figura 4.20) și se 
derivează în raport cu forța 0P . 

Se scriu momentele încovoietoare pe 
fiecare porțiune datorate încărcării 
reale (conform figurii 4.15) și 
momentele rezultate din acțiunea 
forței unitare introduse în punctul  
(figura 4.21). 

interval 
iM  

0

iM

P




 

limite interval 
iM  1im  limite 

 -  0  0 0 a   -  0  0  0 a  

 -  2Fx  0 0 a   -  2Fx  0  0 a  

 -  
02 2Fa P x  x  0 2a

 

 -  2Fa  1 x   0 2a  

Se calculează deplasarea verticală în punctul  conform cu relațiile de calcul: 
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 Metoda Castigliano 

 
2 2

2 3

2

0 00 0 0

0 0 2 0 2 ( ) 2 4

2

a a a a

i i

z z z z z z

M M Fx Fa x Fa x Fa
u dx dx dx dx

EI P EI EI EI EI EI

   
      

     

 

 Metoda forțelor (Mohr_Maxwell) 

 

 
2 2

2 3
1

2

00 0 0

2 10 0 2 0 2 4

2

a a a a

i i

z z z z z z

Fa xM m Fx Fa x Fa
u dx dx dx dx

EI EI EI EI EI EI

   
        

 

Exemplul 4.4 

Se consideră grinda din Figura 4.22 de secțiune constantă, circulară, de 
diametru d . Structura este încastrată în punctul  și iberă în puctul . În 
punctul  acționează o forță egală cu 2F . 

Se cere să se calculeze: 

a) Deplasarea pe verticală în punctul  ( 1v ); 

b) Deplasarea pe verticală a punctului  ( 2v ); 

c) Rotirea punctului  ( 2 ). 

Se vor folosi metoda Castigliano și metoda forțelor (Mohr-Maxwell) 

 

2F 

   


 

a 

x 

 


 

x 

  

a 

 
Figura 4.22 

 

a) Deplasarea pe verticală în punctul  ( 1v ) 
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Metoda Castigliano Metoda forțelor (Mohr-Maxwell) 

Deoarece în punctul  nu există nicio 
forță se va introduce o forță fictivă 0P . 

Se introduce o forță unitară în 
punctul . 

 

2F 

   


 

a 

x 

 


 

x 

  

a 

P0 

 
Figura 4.23 

 

   


 

a 

x 

 


 

x 

  

a 

1 

Figura 4.24 

Se scriu momentele încovoietoare pe 
fiecare porțiune (figura 4.23) și se 
derivează în raport cu momentul fictiv 

0C  

Se scriu momentele încovoietoare 
pe fiecare porțiune datorate 
încărcării reale (conform           
figurii 4.22) și momentele rezultate 
din acțiunea forței unitare introduse 
în punctul  (figura 4.24) 

interval 
iM  

0

iM

P




 

limite interval 
iM  1im  limite 

 -  
0P x   x  0 a   -  0  1 x   0 a  

 -  
0( )

2

P a x

Fx

  


 

( )a x 

 

0 a   -  2Fx  1( )a x 

 

0 a  

 

Se calculează rotirea în punctul  conform cu relațiile de calcul: 

 Metoda Castigliano 

 
1

0 0 0

2 3 3 3 3

0

2 ( )0 ( )

2 2 5

2 3 2 3 3

a a

i i

z z z

a

z z z

Fx a xM M x
v dx dx dx

EI P EI EI

F x x F a a Fa
a

EI EI EI

     
   



   
       

   

  
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 Metoda forțelor (Mohr_Maxwell) 

 

 1
1

0 0

2 3 3 3 3

0

2 1 ( )0 ( 1 )

2 2 5

2 3 2 3 3

a a

i i

z z z

a

z z z

Fx a xM m x
v dx dx dx

EI EI EI

F x x F a a Fa
a

EI EI EI

      
   

   
       

   

  
 

 

b) Deplasarea pe verticală a punctului  ( 2v ); 

 

Metoda Castigliano Metoda forțelor (Mohr-Maxwell) 

Deoarece în punctul  există o forță 2F  
și se va considera această forță egală cu 

0P . 

Se introduce o forță unitară în 
punctul . 

 

2F = P0 
 

   


 

a 

x 

 


 

x 

  

a 

 
Figura 4.25 

 

   


 

a 

x 

 


 

x 

  

a 

1 

 
Figura 4.26 

Se scriu momentele încovoietoare pe 
fiecare porțiune (figura 4.25) și se va 
deriva în raport cu 0P , după care se va 

face înlocuirea 0 2P F . 

Se scriu momentele încovoietoare 
pe fiecare porțiune datorate 
încărcării reale (conform figurii 
4.22) și momentele rezultate din 
acțiunea forței unitare introduse în 
punctul   (figura 4.26) 

interval 
iM  

0

iM

P




 

limite interval 
iM  1im  limite 

 -  0  0  0 a   -  0  0  0 a  

 -  
0P x  x  0 a   -  2Fx  1 x   0 a  
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Se calculează deplasarea verticală în punctul  conform cu relațiile de calcul: 

 Metoda Castigliano 

 

  3 3
0 0

2

0 00 0

0 0 2

3 3

aa a

i i

z z z z z

P x x PM M x Fa
v dx dx dx

EI P EI EI EI EI

     
     

  
    

 

 Metoda forțelor (Mohr_Maxwell) 

 

  3 3
1

2

00 0

2 10 0 2 2

3 3

a a a

i i

z z z z z

Fx xM m F x Fa
v dx dx dx

EI EI EI EI EI

   
        

 

c) Rotirea punctului  ( 2 ). 

 

Metoda Castigliano Metoda forțelor (Mohr-Maxwell) 

Deoarece în punctul  nu există un 
moment, se va introduce un cuplu fictiv 

0C . 

Se introduce un cuplu unitar în 
punctul . 

 

2F 
 

   


 

a 

x 

 


 

x 

  

a 

C0 
 

 
Figura 4.27 

 

   


 

a 

x 

 


 

x 

  

a 

1 
 

 
Figura 4.28 

Se scriu momentele încovoietoare pe 
fiecare porțiune (figura 4.27) și se 
derivează în raport cu forța 0C . 

Se scriu momentele încovoietoare 
pe fiecare porțiune datorate 
încărcării reale (conform           
figurii 4.22) și momentele rezultate 
din acțiunea cuplului unitar 
introdus în punctul     (figura 4.28) 
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interval 
iM  

0

iM

C




 

limite interval 
iM  1im  limite 

 -  0  0  0 a   -  0  0  0 a  

 -  
0 02F x C   1  0 a   -  2Fx  1  0 a  

 

Se calculează rotirea în punctul  conform cu relațiile de calcul: 

 Metoda Castigliano 

 

2 2

2

0 00 0

0 0 2 1 2

2

a a a

i i

z z z z z

M M Fx F x Fa
dx dx dx

EI C EI EI EI EI


   
      

    

 

 Metoda forțelor (Mohr_Maxwell) 

 

2 2
1

2

00 0

0 0 2 1 2

2

a a a

i i

z z z z z

M m Fx F x Fa
dx dx dx

EI EI EI EI EI


  
          

 

Observație 

 semnul (-) indică faptul că rotirea este în sens invers sensului de rotire a 
cuplului 0C . 

 

Exemplul 4.5 

Se consideră structura din figura 4.29 de secțiune constantă pătrată de latură 
b . Structura este încastrată în punctul  și liberă în punctele  și . În 
punctul  acționează o forță egală cu 2F . 

Se cere să se calculeze: 

a) Deplasarea pe orizontală în punctul  ( 1u ); 

b) Deplasarea pe verticală a punctului  ( 2v ); 

c) Rotirea în punctul  ( 2 ). 
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3F  

  


 

3a 

x 

 

a
 

x 


 


 x 

a
 

 
Figura 4.29 

 
Se vor folosi metoda Castigliano și metoda forțelor (Mohr-Maxwell) 

 

a) Deplasarea pe orizontală în punctul  ( 1u ); 

 

Metoda Castigliano Metoda forțelor (Mohr-Maxwell) 

Deoarece în punctul  există o forță 
concentrată 3F  se va considera această 
forță egală cu o forță oarecare 0P . 

Se introduce o foță unitară în 
punctul . 

 

3F = P0  

  


 

3a 

x 

 

a
 

x 


 


 x 

a
 

 
Figura 4.30 

 

1  

  


 

3a 

x 

 

a
 

x 


 


 x 

a
 

 
Figura 4.31 

Se scriu momentele încovoietoare pe 
fiecare porțiune (figura 4.30) și se 
derivează în raport cu forța 0P , după 

Se scriu momentele încovoietoare 
pe fiecare porțiune datorate 
încărcării reale (conform           
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care se înlocuiește în calcul forța 0P  cu 

3F . 

figurii 4.29) și momentele rezultate 
din acțiunea forței unitare introdusă 
în punctul               (figura 4.31). 

interval 
iM  

0

iM

P




 

limite interval 
iM  1im  limite 

 -  
0P x  x  0 a   -  3Fx  1x  0 a  

 -  
0P a  a  0 3a   -  3Fa  1a  0 3a  

 
Se calculează deplasarea orizontală în punctul  conform cu relațiile de calcul: 

 Metoda Castigliano 

 
3

23
30 0 0 0

1 0
0 00 0

3 3 3

3

3 9 10

3

a a a

ai i

z z z z z

z z z

P x x P a a P P aM M x
u dx dx dx x

EI P EI EI EI EI

Fa Fa Fa

EI EI EI

 
     



  

  
 

 

 Metoda forțelor (Mohr_Maxwell) 

 
3

3 2 3
31

1 0

00 0

3 1 3 1 3 3 10

3

a a a

ai i

z z z z z z

M m Fx x Fa a F x Fa Fa
u dx dx dx x

EI EI EI EI EI EI

 
         

 

b) Deplasarea pe verticală a punctului  ( 2v ); 

 

Metoda Castigliano Metoda forțelor (Mohr-Maxwell) 

Deoarece în punctul  nu există o forță 
concentrată se va considera o forță 
fictivă oarecare 0P  orientată în direcție 

verticală. 

Se introduce o forță verticală 
unitară în punctul . 
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3F  

  


 

3a 

x 

 

a
 

x 


 


 x 

a
 

P0 

 
Figura 4.32 

 

1 

 

  


 

3a 

x 

 a
 x 


 


 x 

a
 

Figura 4.33 

Se scriu momentele încovoietoare pe 
fiecare porțiune (figura 4.32) și se 
derivează în raport cu forța 0P . 

Se scriu momentele încovoietoare 
pe fiecare porțiune datorate 
încărcării reale (conform           
figurii 4.29) și momentele rezultate 
din acțiunea forței unitare introduse 
în punctul                (figura 4.33) 

interval 
iM  

0

iM

P




 

limite interval 
iM  1im  limite 

 -  3Fx  0  0 a   -  3Fx  0  0 a  

 -  
03Fa P x  x  0 3a   -  3Fa  1x  0 3a  

 

Se calculează deplasarea verticală în punctul  conform cu relațiile de calcul: 

 Metoda Castigliano 

 
3 32 3

2

0 00 0

3 0 3 3 27

2 2

a a a

i i

z z z z z

M M Fx Fa x Fax Fa
v dx dx dx

EI P EI EI EI EI

  
    

    

 

 Metoda forțelor (Mohr_Maxwell) 

 
3 3

2 3
1

2

00 0

3 0 3 1 3 27

2 2

a a a

i i

z z z z z

M m Fx Fa x F x Fa
v dx dx dx

EI EI EI EI EI

 
        
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d) Rotirea în punctul  ( 2 ). 

 

Metoda Castigliano Metoda forțelor (Mohr-Maxwell) 

Deoarece în punctul  nu există un 
moment concentrat se va considera un 
cuplu fictiv oarecare 0C . 

Se introduce un cuplu unitar în 
punctul . 

 

3F  

  


 

3a 

x 

 

a
 

x 


 


 x 

a
 

C0 

Figura 4.34 

 

1 

 

  


 

3a 

x 

 a
 x 


 


 x 

a
 

Figura 4.35 

Se scriu momentele încovoietoare pe 
fiecare porțiune (figura 4.34) și se 
derivează în raport cu forța 0C . 

Se scriu momentele încovoietoare 
pe fiecare porțiune datorate 
încărcării reale (conform           
figurii 4.29) și momentele rezultate 
din acțiunea cuplului unitar 
introdus în punctul      (figura 
4.35) 

interval 
iM  

0

iM

C




 

limite interval 
iM  1im  limite 

 -  3Fx  0  0 a   -  3Fx  0  0 a  

 -  
03Fa C  1  0 3a   -  3Fa  1  0 3a  

 

Se calculează rotirea în punctul  conform cu relațiile de calcul: 

 Metoda Castigliano 
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3 3
2

2

0 00 0

3 0 3 1 3 9
a a a

i i

z z z z z

M M Fx Fa Fax Fa
dx dx dx

EI C EI EI EI EI


  
    

    

 

 Metoda forțelor (Mohr_Maxwell) 

 
3 3 2

1
2

00 0

3 0 3 1 3 9
a a a

i i

z z z z z

M m Fx Fa Fax Fa
dx dx dx

EI EI EI EI EI


 
        

 

Exemplul 4.6 

Se consideră structura din Figura 4.36 de secțiune constantă circulară de 
diametru d . Structura este încastrată în punctul  și liberă în punctul . În 
punctul  acționează forța 3F  iar în punctul  acționează o forță egală cu 2F . 

Se cere să se calculeze: 

a) Deplasarea pe orizontală în punctul  ( 1u ); 

b) Deplasarea pe verticală a punctului  ( 2v ); 

c) Rotirea în punctul  ( 2 ). 

 

 

 

  



 

3a 

x 

 

a
 

x 


 


 

x 

a
 

3a 

3F 

3
a

 

2F 

 
Figura 4.36 

 

Se vor folosi metoda Castigliano și metoda forțelor (Mohr-Maxwell) 

 

a) Deplasarea pe orizontală în punctul  ( 1u ); 
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b)  

Metoda Castigliano Metoda forțelor (Mohr-Maxwell) 

Deoarece în punctul  există o forță 
concentrată 3F  se va considera această 
forță egală cu o forță oarecare 0P . 

Se introduce o foță unitară în 
punctul  (figura 4.38). 

 

 

  



 

3a 

x 

 

a
 

x 


 


 

x 

a
 

3a 

3F = P0 

3
a

 

2F 

 
Figura 4.37 

 

 

  



 

3a 

x 

 

a
 

x 


 


 

x 

a
 

3a 

1 
3

a
 

Figura 4.38 

Se scriu momentele încovoietoare pe 
fiecare porțiune (figura 4.37) și se 
derivează în raport cu forța 0P , după 

care se înlocuiește în calcul forța 0P  cu 

3F . 

Se scriu momentele încovoietoare 
pe fiecare porțiune datorate 
încărcării reale (conform            
figurii 4.36) și momentele rezultate 
din acțiunea forței unitare introdusă 
în punctul               (figura 4.38). 

interval 
iM  

0P

Mi




 

limite interval 
iM  1im  limite 

 -  
0P x  x  0 3a   -  3Fx  1x  0 3a  

 -  
03 2aP Fx   3a  0 3a   -  9

2

Fa

Fx

 


 

1 3a 

 
0 3a  

 

Se calculează deplasarea orizontală în punctul  conform cu relațiile de calcul: 

 Metoda Castigliano 
3 3

0 0
1

0 0 0

33 23 2
0 0

0 0

( ) ( ) ( 3 2 )( 3 )

9 6

3 2

a a

i i

z z z

aa

z z z

P x x P a Fx aM M
u dx dx dx

EI P EI EI

P P ax Fa x
x

EI EI EI

      
   



 
   

 

  
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3 3 3 3 3 3 3
0 0

1

27 27 54 3 27 27 3 27 135

3 2 3z z z z z z z

P a P a Fa F a F a Fa Fa
u

EI EI EI EI EI EI EI

  
        

 

 Metoda forțelor (Mohr_Maxwell) 

 
3 3

1
1

0 0

3 3
3 2 2 3 3 3 3

3

0

0 0

( 3 ) ( 1 ) ( 9 2 ) ( 1 3 )

3 27 6 27 81 27 135

3 2

a a

i i

z z z

a a

a

z z z z z z z

M m Fx x Fa Fx a
u dx dx dx

EI EI EI

F x Fa Fa x Fa Fa Fa Fa
x

EI EI EI EI EI EI EI

       
   

      

  
 

 

b) Deplasarea pe verticală a punctului  ( 2v ); 

 

Metoda Castigliano Metoda forțelor (Mohr-Maxwell) 

Deoarece în punctul  există o forță 
concentrată 2F  se va considera această 
forță egală cu o forță oarecare P . 

Se introduce o foță unitară în 
punctul  (figura 4.40). 

 

 

  



 

3a 

x 

 

a
 

x 


 


 

x 

a
 

3a 

3F 

3
a

 

2F = P 

 
Figura 4.39 

 

 

  



 

3a 

x 

 

a
 

x 


 


 

x 

a
 

3a 

1 

3
a

 

Figura 4.40 

Se scriu momentele încovoietoare pe 
fiecare porțiune (figura 4.39) și se 
derivează în raport cu forța P , după 
care se înlocuiește în calcul forța P  cu 
2F . 

Se scriu momentele încovoietoare 
pe fiecare porțiune datorate 
încărcării reale (conform           
figurii 4.36) și momentele rezultate 
din acțiunea forței unitare introdusă 
în punctul              (Figura 4.40). 
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interval 
iM  

P

Mi




 

limite interval iM  1im  limite 

 -  3Fx  0  0 3a   -  3Fx  0  a30   

 -  3 3F a Px  

 

x  0 3a   -  9

2

Fa

Fx

 


 

1x  0 3a  

 

Se calculează deplasarea verticală în punctul  conform cu relațiile de calcul: 

 

 Metoda Castigliano 

 
33 3

2 3

2

00 0

( 3 ) 0 ( 3 3 )( ) 9

2 3

aa a

i i

z z z z z

M M Fx F a Px x Fa x P x
v dx dx dx

EI P EI EI EI EI

       
     

  
  

3 3 3

2

81 2 81 189

2 3 2z z z

Fa F a Fa
v

EI EI EI


    

 

 Metoda forțelor (Mohr_Maxwell) 

 
3 3 3 3

2 3
1

2

0 00 0

( 3 ) 0 ( 9 2 ) ( 1 ) 9 2

2 3

a a a a

i i

z z z z z

M m Fx Fa Fx x Fa x F x
v dx dx dx

EI EI EI EI EI

      
      

 
3 3 3 3

2

81 2 81 27 189

2 3 2z z z z

Fa F a Fa Fa
v

EI EI EI EI


     

 

c) Rotirea în punctul  ( 2 ) 

 

Metoda Castigliano Metoda forțelor (Mohr-Maxwell) 

Deoarece în punctul  nu există un 
cuplu, se va introduce în acest punct un 
moment oarecare concentrat 0C . 

Se introduce un moment unitar în 
punctul  (figura 4.42). 



REZISTENȚA MATERIALELOR METODE ENERGETICE DE CALCUL A DEFORMAȚIILOR 

 

138 

 

 

  



 

3a 

x 

 

a
 

x 


 


 

x 

a
 

3a 

3F 

3
a

 
2F  

C0 

 
Figura 4.41 

 

 

  



 

3a 

x 

 

a
 

x 


 


 

x 

a
 

3a 

1 

3
a

 

 

Figura 4.42 

Se scriu momentele încovoietoare pe 
fiecare porțiune (figura 4.41) și se 
derivează în raport cu momentul 0C . 

Se scriu momentele încovoietoare 
pe fiecare porțiune datorate 
încărcării reale (conform            
figurii 4.36) și momentele rezultate 
din acțiunea momentului unitar 
introdus în punctul     (figura 
4.42). 

interval 
iM  

0

iM

C




 

limite interval 
iM  1im  limite 

 -  3Fx  0  0 3a

 

 -  3Fx  0  0 3a  

 -  

0

3 3 2F a Fx

C

   



 

1  0 3a

 

 -  9

2

Fa

Fx

 



 

1  0 3a  

 

Se calculează deplasarea verticală în punctul  conform cu relațiile de calcul: 

 

 Metoda Castigliano 

 
33 3

2

2

00 0

( 3 ) 0 ( 9 2 )( 1) 9 2

2

aa a

i i

z z z z z

M M Fx Fa Fx Fa F x
v dx dx dx x

EI P EI EI EI EI

      
     

  
  
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2 2 2

2

27 9 36

z z z

Fa a Fa
v

EI EI EI
    

 

 Metoda forțelor (Mohr_Maxwell) 

 
3 3 3

2
31

2 0

00 0

( 3 ) 0 ( 9 2 ) ( 1) 9 2

2

a a a

ai i

z z z z z

M m Fx Fa Fx Fa F x
v dx dx dx x

EI EI EI EI EI

     
      

 
2 2 2

2

27 9 36

z z z

Fa Fa Fa
v

EI EI EI
    

 

4.6. Metoda lui Mohr-Vereșciaghin 
 

Se consideră o porțiune de grindă la care se analizează diagrama de 
momente încovoietoare rezultată din încărcarea exterioară reală și cea de 
momente încovoietoare rezultată din încărcarea unitară (figura 4.43). 

Corespunzător acestui element de arie, în diagrama de momente îi 
corespunde un element de arie egal cu: 

 

i id M dx  .    (4.40) 

 

 În diagrama de momente rezultată din încărcarea unitară, 

corespunzător momentului de încovoiere iM  din diagrama de încărcare reală, 

îi corespunde un moment încovoietor unitar ikm  care este egal cu: 

 

ikm x tg  .    (4.41) 

 

 Considerțnd integrala aferentă solicitării de încovoiere din relația 
(4.39), fără a considera modulul de rigiditate .zEI ct : 

 
2 2 2 2

1 1 1 1

i ik i i iM m dx M x tg dx x tg d tg x d              (4.42) 
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x 

x 

mb 

Mb 

d = Mi dx 

x dx 

xG 

G 

0 

x 

xG 

0 


a) 

b) 

m = x tg 

m = xG tg 

 

  

  

 

 

 
Figura 4.43 

 

 În relația (4.42) ultima integrală este egală cu momentul static al 
suprafeței diagramei de momente reale: 

 
2

1

Gx d x       (4.43) 

 

unde   reprezintă aria diagramei de momente reale, iar Gx  este abscisa 

centrului de greutate al acestei diagrame. 

 Combinând relațiile (4.42) cu (4.43) rezultă: 

 
2

1

i G G Gtg x d tg x x tg m         .  (4.44) 
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 Pe baza relației (4.44) se poate concluziona că integrala 
corespunzătoare din relația (4.39), corespunzătoare solicitării de încovoiere, 
de pe o porțiune de grindădreaptă, este egală cu produsul dintre aria 
diagramei de solicitare și efortul produs de încărcarea unitară din dreptul 
centrului de greutate al suprafeței  . 

 Pe bazaacestei reguli de înmulțire a diagramelor se numește metoda 
lui Vereșceaghin. Ea se aplică tuturor eforturilor din secțiunile drepte de 
bare. Ca urmare, relația de calcul generalizată etse: 

 

t iM tGk M iGkN Gk T Gk
k

p z

m mn t

E A G A G I E I


  
         (4.45) 
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SISTEME STATIC 
NEDETERMINATE 5 
 

 

 

 

 

5.1. Introducere 
 

Structurile nedeterminate static apar mai frecvent în practică decât cele care sunt 
determinate static și sunt, în general, mai economice prin faptul că sunt mai rigide și mai 
puternice. 

 

 

  

MA MB 

XA XB 

F1 

F2 

YA YB 

A B 

C D 

l 

l 

l 

 
Figura 5.1 

 

Se consideră cadrul prezentat în figura 5.1. Cadrul este încărcat cu sarcini coplanare 
astfel încât sistemul este bidimensional.  

Deoarece elementele verticale AC și BD ale cadrului sunt fixe la A și B, sarcinile aplicate 
vor genera un total de șase reacțiuni 3 forțe și 3 momente, așa cum este prezentat în figură. 

Ecuațiile de echilibru static sunt: 

 

1

2

1 2

0; 0 ;

0; 0 ;

0; 0 .

A B

A B

A A B B

X X F X

Y Y F Y

M M F l F l Y l M

    



   

         






  (5.1) 
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Așa cum rezultă din sistemul de ecuații (5.1), sunt 6 valori necunoscute 

 , , , , ,A B A B A BX X Y Y M M  și numai 3 ecuații de echilibru.  

 
Concluzia este că sistemul este static nedeterminat 

 

În funcție de cauza nedeterminării, pot fi identificate trei tipuri de sisteme static 
nedeterminate: 

a) sisteme cu nedeterminări exterioare, caz în care numărul reacţiunilor exterioare 
este mai mare decât numărul ecuațiilor de echilibru cunoscute din static și care 
sunt aplicabile sistemului respective. Nedeterminarea apare ca urmare a numărului 
mare de legături pe care sistemul le are cu mediul exterior. Drept necunoscute sunt 
considerate reacțiunile și după determinarea lor pot fi rezolvate prblemele. Din 
această categorie fac parte grinzile drepte aşezate pe mai multe reazeme, cu sau 
fără încastrări, bare cotite, cadre, bare curbe, grinzi cu zăbrele etc. 

b) sisteme cu nedeterminări interioare, caz în care eforturile din secțiunile 
transversale nu pot fi determinate cu ajutorul metodelor de calcul ale staticii, cu 
toate că valorile reacţiunilor exterioare pot fi determinate pe baza ecuaţiilor de 
echilibru cunoscute din statică. Nedeterminarea, în acest caz, este datorată, pe de o 
parte, formei închise pe care o are sistemul, iar pe de altă parte, legăturile rigide 
existente între bare, aspect care fac imposibilă determinarea eforturilor secţionale, 
cu metodele de calcul ale staticii. Acest tip de nedeterminări pot să se dezvolte în 
cazuri precum: cadre închise, inele, grinzile cu zăbrele cu bare suplimentare etc. 

c) sisteme cu nedeterminări exterioare şi interioare, caz în care există o 
combinare a celor două situații de la punctele „a” și „b”. 

Orice problemă static nedeterminată, indiferent de natura nedeterminării este definite 
de „gradul de nedeterminare”. Gradul de nedeterminare este definit a fi egal cu diferenţa 
dintre numărul necunoscutelor şi numărul ecuaţiilor de echilibru static  aplicabile structurii 
analizate. 

 Toate mărimile care nu pot fi determinate din ecuațiile de echilibru static sunt definite 
a fi „mărimi static nedeterminate”. 

 

Observație: Numărul mărimilor static nedeterminate este egal cu gradul de nedeterminare al 
sistemului.  

 

Operația de determinare a mărimilor static nedeterminate este denumită „ridicarea 
nedeterminării”. 

Practic, oricare dintre mărimile necunoscute poate fi considerată a fi mărime static 
nedeterminată. 

Astfel, în cazul sistemelor cu nedeterminări exterioare legăturile exterioare 
suplimentare sunt înlocuite cu reacţiunile static nedeterminate, în timp ce, în cazul sistemelor 
cu nedeterminări interioare sunt înlăturate legăturile interioare suplimentare, considerându-
se bara sistemului secționată pe porţiunea static nedeterminată fiind evidențiate eforturile 
interioare static nedeterminate. 

 Ridicarea nedeterminărilor se bazează pe două grupe de condiții: 

a) pe condiții de legătură scrise în dreptul și pe direcția mărimilor static 
nedeterminate, exprimate prin deformațiile geometrice (săgeata sau rotirea nule), 
în cazul sistemelor cu nedeterminări exterioare; 
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b) pe condiţii de continuitate ale fibrei medii deformate, scrise în dreptul şi pe direcția 
mărimilor static nedeterminate, exprimate prin condiția ca fibra medie deformată 
să fie o curbă continuă, în cazul sistemelor cu nedeterminări interioare. 

 

Observație: condiţiile de legătură şi de continuitate, folosite la rezolvarea problemelor static 
nedeterminate, defines aşa-numite „ecuaţii de echilibru elastic”.  

 

 Ca urmare, problemele static nedeterminate se rezolvă folosind două tipuri de ecuații 
de echilibru: echilibru static şi echilibru elastic. 

 Ținând cont de cele de mai sus, se poate afirma faptul că rezolvarea problemelor static 
nedeterminate se poate face prin calculul unor deformații (deplasări și/sau rotiri) în puncte în 
care valoarea acestora este cunoscută.  

 În concluzie, oricare din metodele cunoscute de calcul a deformațiilor poate fi folosită 
la ridicarea nedeterminării, prin aceste metode putându-se exprima ecuațiile de echilibru 
elastic.  

În analiza structurilor nedeterminate static se folosesc două metode de bază: 

  într-una, structura este redusă la o stare statică determinată prin prin eliminarea 
unui număr suficient de necunoscute pentru a permite determinarea reacțiunilor. 
În cadrul din figura 5.1, de exemplu, numărul de reacțiuni de legătură ar fi redus la 
trei dacă una dintre legături ar fi fixată (rămâne încastrată), iar cealaltă ar fi un 
suport cu role. Același rezultat ar fi obținut dacă o legătură ar rămâne fixă, iar 
celălaltă legătură ar fi eliminată în întregime. Remodelarea unei structuri în acest 
fel ar produce deplasări care altfel nu ar fi prezente. Aceste deplasări pot fi 
calculate prin analizarea structurii determinate static. Această metodă este, în 
general, numită flexibilitate sau metoda de forțelor.  

 procedura alternativă, cunoscută sub numele de rigiditate sau metoda deplasărilor, 
este similară cu metoda de forțelor, diferența majoră fiind că necunoscutele sunt 
deplasările în anumite puncte ale structurii. În general, procedura necesită o 
structură care urmează să fie împărțită într-un număr de elemente pentru fiecare 
dintre care sunt cunoscute relațiile de deplasare. Ecuațiile de echilibru sunt apoi 
scrise în termeni de deplasări ale legăturilor elementului și sunt rezolvate din 
deplasările necesare. 

Atât în cazul metodei flexibilităților cât și în cazul metodei rigidităților, pentru 
structuri cu un grad ridicat de nedeterminare statică, se obțin un număr mare de ecuații, care 
sunt cel mai ușor rezolvate prin tehnici bazate pe calculator. 

 

5.2. Metoda forțelor sau a flexibilităților 
 

5.2.1. Considerații teoretice 

 

 Este considerat un cadru complex (figura 5.2) care este încărcat cu un set de forțe 

 , 1,iF i n . Sistemul este determinat static, iar forma sa se schimbă ca urmare a acțiunii 

forțelor. 
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Figura 5.2 

 

Deplasarea într-un punct „k" este considerată a fi k  și valoarea sa depinde de nivelul 

și punctul de aplicare a forțelor: 

 

                       1 2, ,... ,k k nF F F        (5.2) 

 

 Având în vedere principiul superpoziției, deformarea k  pot fi descrise de o relație ca: 

 

1 1 2 2 3 3 ...k k k k kn nF F F F         ,   (5.3) 

 

unde  1,ki i n   sunt coeficienții de influență.  

Înțelesul coeficienților de influență se poate explica pe baza relației (5.3). În cazul în 
care sistemul de încărcare este considerat a fi compus numai dintr-o singură forță egală cu 
unitatea, de exemplu 1jF  , atunci deformarea în punctual „k” este: 

 

k kj  ,     (5.4) 

 

care poate fi înțeleasă astfel: coeficientul kj  este deplasarea punctului „k" în direcția k  

atunci când se aplică o singură forță (sarcină) egală cu unitatea în loc de forța jF . 

Indexul care definește coeficientul de influență au următorul înțeles: 

 Primul index, „k”, definește atât poziția, cât și direcția deplasării; 

 Al doilea index, „j”, definește sarcina unitară care produce deformarea. 

În cazul unui sistem complex de bare (sisteme de cadre), coeficienții de influență pot fi 
calculați utilizând relația Mohr-Maxwell: 

 

j k j k bj bk tj tk

jk

z p

n n t t m m m m
dx dx dx dx

EA GA EI GI
           . (5.5) 

 

 Din relația (5.5) rezultă teorema reciprocității deplasărilor: 
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kj jk  ,     (5.6) 

 

care exprimă faptul că deplasarea în punctul „k” în direcția k , produsă de o forță unitară 

aplicată în punctual  „j”, în locul forței jF , este egală cu deplasare din punctul „j”, pe direcția lui 

jF , produsă  de aceași sarcină aplicată în punctual „k”, pe direcția lui k . 

 

5.2.2. Sisteme static nedeterminate 
 

 Să consideră sistemul nedeterminat din figura 5.3. Gradul nedeterminat este „n”. 
Sistemul este modificat într-unul echivalentă prin înlocuirea legăturilor suplimentare interne 
și externe cu sarcinile statice nedeterminate 1 2, ,... , nX X X . 

  

Figura 5.3 

 

Având în vedere condițiile de limită și de continuitate, deplasările și rotațiile punctelor 
de legătură sunt egale. cu zero: 

 

1 2 30; 0; 0;...; 0;n            (5.7) 

 

 Luând în considerare principiul superpoziției și relația (5.3) o deplasare este rezultatul 
acțiunii tuturor forțelor, necunoscut (reacțiuni) 1 2, ,... , nX X X  și a forțelor cunoscute 

 , 1,iF i n . Ca urmare, folosind ecuațiile (5.3) și (5.7) rezultă următorul sistem de ecuații: 

 

1 2

1 2

1 2

1 11 1 12 2 1 1 1 1

2 21 1 22 2 2 2 2 2

1 1 2 2

... ... 0;

... ... 0;

... ... 0;

n

n

n

n n F F F

n n F F F

n n n nn n nF nF nF

X X X

X X X

X X X

  

  

  

         

         



          

  (5.8) 
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 Numărul de ecuații de la (5.8) este egal cu numărul de valori necunoscute (adică este 
egal cu gradul de nedeterminare statică a structurii). 

Pentru structurile care au un grad ridicat de nedeterminare statică, determinarea 
soluțiilor sistemului (5.8) este dificilă, calculul acestora fiind mult mai facil cu calculatorul 
electronic. 

După cum se poate observa pentru determinarea valorilor necunoscute, este necesar 
să se calculeze coeficienții de influență kj .  

Trebuie făcute unele observații cu privire la acești coeficienți: 

 Aceștia sunt numiți „coeficienți direcți" în cazul în care indicii sunt k j , 

„coeficienți secundari” dacă indicii sunt diferiți, jk ; 

 „coeficienții direcți” au tot timpul valori pozitive; 

  „coeficienții secundari” pot avea valori positive sau negative precum și zero. 

Termenul liber kF , care reprezintă deplasarea în punctual „k” cauzată de forțele 

aplicate sistemului poate fi calculată folosind relația lui Mohr-Maxwell: 

 

b bk t tkk k
kF

z p

M m M mNn T t
dx dx dx dx

EA GA EI GI
             (5.9) 

 

Concluzii 

 În absența oricărei sarcini cauzată de variația temperaturii, sistemul (5.8) este 
scris sub forma: 

 

1

0
n

kj j kF

j

X


   ,  1,2,3,... ,k n    (5.10) 

 

 Pe baza relației (5.8), relația (5.10) poate fi rescisă în forma matriceală: 

 

      F δ X Δ 0 ,   (5.11) 

 

unde  δ  este matricea deplasărilor unitare: 

 

 

11 12 1

21 22 2

1 2

n

n

n n nn

  

  

  

 
 
 
 
 
 

δ ,    (5.12) 

 

iar  X  este vectorul valorilor necunoscute: 
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 

1

2

n

X

X

X

 
 
 

  
 
  

X ,     (5.13) 

și  FΔ  este vectorul deplasărilor cauzate de forțele externe: 

 

 

1

2

F

F

F

nF

 
 
 

  
 
  

Δ .    (5.14) 

 

Procedura de găsire a valorilor necunoscute este definită de următorii pași: 

1. se determină gradul de nedeterminare al sistemului; 

2. se aleg valorile neconoscute care se doresc a fi calculate (forțe și/sau momente) 
care urmează a fi determinate; 

3. se consideră sistemul istemul determinat obținut din sistemul inițial prin 
înlăturarea legăturilor pe direcția forțelor/momentelor necunoscute obținându-
se sistemul static de bază; 

4. pe sistemul static de bază se introduc, pe rând, forțe sau momente unitare în 
punctele și pe direcțiile forțelor sau momentelor necunoscute; 

5. se calculează coeficienții de influență dațI de forțele unitare kj ; 

6. pe sistemul static de bază se consideră forțele externe reale și se calculează 

termenii kF ,  1,2,3,... ,k n ; 

7. se scrie sistemul de ecuații (5.10); 

8. se rezolvă sistemul de ecuații (5.10). 

 

Exemplul 5.1 

 Se consideră sistemul din figura 5.4 încastrat în punctual A și articulat în punctul B. Se 
pune problema ridicării nedeterminării sistemului. 
 

 

 
 

a a 

3a 3a 

A B 

C D  

E Iz = ct. 

 
a) 

 

 

A B 

C D 

 
b) 

 

 

A B 1 

1 
 

c) 

 

Figura 5.4 
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Rezolvare: 

Pasul 1: se calculează gradul de nedeterminare; 

Sistemul este de două ori static nedeterminat: 5 necunoscute  , , , ,A A A B BX Y M X Y  și 

numai 3 ecuații de echilibru static independent. Ca urmare gradul de nedeterminare este: 

N  =  numărul necunoscutelor (5) – numărul ecuațiilor de echilibru static (3)  =  2 

 

Pasul 2: se aleg necunoscutele care se doresc a fi determiante; se aleg, în acest caz reacțiunile  

BX  și BY ; 

 

Pasul 3: se consideră sistemul static determinat obținut din sistemul inițial la care s-au tăiat 
legăturile în care acționează cele două forțe alese BX  și BY  (figura 5.4,b); 

 

Pasul 4: în locul necunoscutelor BX  și BY  se introduc, pe rând, forțele unitare (figura 5.4, c); 

 

Pasul 5: se calculează coeficienții kj  cu relațiile 

 

1 1 1 2 2 2
11 12 21 22, ,

z z z

m m m m m m
dx dx dx

EI EI EI
            

 

Pasul 6: se calculează termenii kF :  1 2,F F   

 

Pasul 7: se rezolvă sistemul de ecuații (5.10). 

 

Exemplul 5.2 

Se consideră grinda din figura 5.5 încastrată în punctul B  și simplu rezemată în 
punctul A  se cere să se determine reacțiunile care apar ca urmare a încărcării grinzii cu o 
forță distribuită, de intensitate constantă q  pe toată lungimea l . 

 

 

x 

A 
B 

q 

YA 

l 

YB 

XB 

MB 

 
Figura 5.5 

 

Ca urmare a sistemului de legături, asupra grinzii acționează următoarele reacțiuni: 

 În reazemul din punctul A  o forță de reacțiune AY ; 

 În încastrarea din B  trei reacțiuni BX , BY  și BM . 
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Din capitolul de Statică de la Mecanică se cunoaște faptul că pot fi scrise un număr de 3 
ecuații, independente, de echilibru: 

 

0;

0;

0.

X

Y

M

 





 






 

 

Ca urmare, gradul de nedeterminare este: 

 

1)3(.)4(.  echilibrudeecuatiilornrelornecunoscutnrn  

 

Pentru ridicarea nedeterminării se alege una din cele 4 necunoscute pentru a fi 
calculate. Trebuie specificat faptul că, din ecuația de echilibru de pe direcția axială rezultă că 
forța 0AX   (nu există încărcare pe această direcție).  

Problema rămîne static nedeterminată deoarece rămân necunoscute forțele AY  și BY  

precum și momentul AM  iar numărul ecuațiilor independente rămase este de 2. 

Se alege să se determine reacțiunea din A . Pentru determinare se pornește de la 
condiția geometrică 0Av   deoarece în reazem deplasarea este zero. 

În continuare se prezintă ambele metode de calcul: metoda Castigliano și metoda 
forțelor (Mohr-Maxwell). 

 

a) Metoda Castigliano 

 

Relația de calcul a săgeții în punctul A  este: 

0

l

i i
A

z A

M M
v dx

EI Y




 ,  

unde iM  este momentul de încovoiere pe fiecare interval considerat, de lungime l . Fiind un 

singur interval se va scrie momentul încovoietor la distanța x  de punctul A . 

 

Interval 
iM  i

A

M

Y




 

Limite 

A B  2

2
A

qx
Y x   

x  0 l  

 

Ca urmare: 

2 3 3 4
2

00 0 0

1 1 1

2 2 3 8

ll l l

i i
A A A A

z A z z z

M M qx qx x qx
v dx Y x x dx Y x dx Y

EI Y EI EI EI

     
           

      
    
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sau      
3 41

0
3 8

A

z

l ql
Y

EI

 
  

 
 

de unde: 

      
3

0,375
8

AY ql ql  . 

 

b) Metoda forțelor (Mohr_Maxwell) 

 

În cazul acestei metode în primă fază se alege necunoscuta care se dorește a fi 
determinate. După alegerea necunoscutei se construiește Sistemul Static de Bază (SSB) 
realizat din sistemul inițial la care se „rupe” legătura în care este necunoscuta care se dorește 
a fi calculată. Alegând tot forța AY se „rupe” legătura din A  rezultând SSB din Figura 5.6. 

 

A 
B 

l 

B 

 
Figura 5.6 

 

În continuare, pe SSB se pun, pe rând, încărcarea reală (figura 5.7) și o forță unitară 1 
în punctul și pe direcția reacțiunii ce urmează a fi determinată (figura 5.8). 

 

x 

A 
B 

q 

l 

B 

 
Figura 5.7 

 

x 

A 
B 

1 

l 

B 

 
Figura 5.8 
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Se vor scrie momentele reale de încovoiere iFM , pentru încărcarea din figura 5.7 și 

momentul încovoietor unitar 1im , pentru încărcarea din figura 5.8. Calculul deformării în 

punctul A  ține cont că valoarea deplasării este zero ( 0Av  ) și se face pe baza ecuației:  

 

11 1 1 0FX     

 

unde 1 AX Y  reprezintă necunoscuta, 11  reprezintă factorul de influență al reacțiunii AY  (cu 

cât influențează reacțiunea AY  deplasarea din punctul A) iar 1F  reprezintă influența pe care 

o are încărcarea reală asupra aceleiași deplasări din punctul A . 

Pe baza figurilor 5.7 și 5.8 se scriu următoarele relații pentru cele două momente: 

 

Interval 
iFM  1im  Limite 

A B  2

2

qx
  

1 x  0 l  

 

Factorii de influență se calculează astfel: 

 

  
3 3

1 1
11

00 0

1
1 1

3 3

l l l

i i

z z z z

m m x l
dx x x dx

EI EI EI EI



      

 

 
2 4 4

1
1

00 0

1
1

2 8 8

l l l

iF i
F

z z z z

M m qx qx ql
dx x dx

EI EI EI EI

 
       

 
   

 

Înlocuind factorii de influență în ecuația deformării în punctul A  rezultă; 

 
3 4

1 0
3 8z z

l ql
X

EI EI
   

din care rezultă:   
3

0,375
8

AY ql ql  . 

 

Exemplul 5.3 

Se consideră cadrul din Figura 5.10 de secțiune constantă, circulară ( .zEI ct ), încastrat în 

punctul B  și rezemat în punctul A . Se cere să se ridice nedeterminarea. 

 

Rezolvare 

Ca și în problema precedent, există 4 necunoscute: 

 În reazemul din punctul A  o forță de reacțiune AY ; 

 În încastrarea din B  trei reacțiuni BX , BY  și BM . 
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Figura 5.10 

 

Reacțiunea BX  poate fi determinate din ecuația de echilibru static: 

0X  , 

din care rezultă 3AX F . 

Ca urmare, rămân 3 necunoscute: forțele AY  și BY  precum și momentul AM  iar numărul 

ecuațiilor independente rămase este de 2, sistemul fiind o dată static nedeterminat. 

Se alege ca necunoscută ce urmează a fi calculate, forța AY . 

 

a) Metoda Castigliano 

Relația de calcul a săgeții în punctul A  este: 

0

l

i i
A

z A

M M
v dx

EI Y




 ,  

unde iM  este momentul de încovoiere pe fiecare interval considerat, de lungime l . 

Se pornește din punctul A , se scrie momentul încovoietor pe fiecare tronson în parte, 
se derivează în raport cu AY  și se introduce în formula de calcul a săgeții din A  ( Av ). 

 

Interval 
iM  i

A

M

Y




 

Limite 

A  ÷  
AY x  x  0 3a  

 ÷  (3 )AY a x Fx   3a x  0 2a  

 ÷  5 2AY a F a    5a  0 4a  

 ÷ B 5 2AY a F a Fx     5a  0 4a  
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Pe baza datelor din tabel, avem: 

 

0

0

l

i i
A

z A

M M
v dx

EI Y


 

 ,  

 

sau:
 

     
3 2 4 4

0 0 0 0

(3 ) 5 2 5 2
(3 ) 5 5

a a a a

A A AA
A

z z z z

Y a x Fx Y a F a Y a F a FxY x
v x dx a x dx adx adx

EI EI EI EI

        
        

 
2 23 2 23 2 3 2 3

44 42 2

0 00
0 0 0

25 25
9 6 3 10

3 2 3 2 3

a aa
aa aA A A A

z z z z z

Y Y a Y a Yx x x F x x
a x a a x Fa x x

EI EI EI EI EI

   
            

   
 

 
4

2 2 3 3
4

0

0

10 5 1 725 386
0

2 3 3

a

a

A

z z z

a F aF x a a
x Y F

EI EI EI

 
     

 
 

Ca urmare, reacțiunea:  

386
0,532

725
AY F F  . 

 

b) Metoda forțelor (Mohr_Maxwell) 

 

În cazul acestei metode în primă fază se alege necunoscuta care se dorește a fi 
determinate. După alegerea necunoscutei se construiește Sistemul Static de Bază (SSB) 
realizat din sistemul inițial la care se „rupe” legătura în care este necunoscuta care se dorește 

a fi calculate. Alegând tot forța AY se „rupe” legătura din A , rezultând SSB din figura 5.11. 

 

B 

A  

 
Figura 5.11 
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În continuare, pe SSB, se pun, pe rând, încărcarea reală (Figura 5.12) și o forță unitară 
1 în punctul și pe direcția reacțiunii ce urmează a fi determinată (Figura 5.13). 

Se vor scrie momentele reale de încovoiere iFM , pentru încărcarea din figura 5.12 și 

momentul încovoietor unitar 1im , pentru încărcarea din figura 5.13. 

Calculul deformării în punctul A  ține cont că valoarea deplasării este zero ( 0Av  ) și se 

face pe baza ecuației:  

 

11 1 1 0FX     

 

unde 1 AX Y  reprezintă necunoscuta, 11  reprezintă factorul de influență al reacțiunii AY  (cu 

cât influențează reacțiunea AY  deplasarea din punctul A) iar 1F  reprezintă influența pe care 

o are încărcarea reală asupra aceleiași deplasări din punctul A . 

 

 
3a 

B 

4
a

 
4

a
 

A 

YA 

4
a

 

2a 

x 

 

x 

 

 

 

x 

 


 

x 


 

F 

3F 

 
Figura 5.12 

 
3a 

B 

4
a

 
4

a
 

A 

1 
4

a
 

2a 

x 

 

x 

 

 

 

x 

 


 

x 


 

 
Figura 5.13 

 

Pe baza figurilor 5.12 și 5.13 se scriu următoarele relații pentru cele două momente: 

 

Interval 
iFM  1im  Limite 

A  ÷  0 1 x  0 3a  

 ÷  Fx   1 3a x   0 2a  

 ÷  2F a   1 5a  0 4a  

 ÷ B 2F a Fx    1 5a  0 4a  
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Factorii de influență se calculează astfel: 

 

     
3 2 4

1 1
11

0 0 0 0

1 1 1
1 1 1 (3 ) 1 (3 ) 5 5

l a a a

i i

z z z z

m m
dx x x dx a x a x dx a adx

EI EI EI EI



              

24 3
3 2 3 3

4 42 2 2

0 0

0 00

1 1 725
5 5 9 6 25 25

3 2 3 3

aa a

a a

z z z

x x x a
a adx a x a a x a x

EI EI EI

  
          
   

  

       

 

1
1

0 0 0 0

2 4 4 4
2 3 2 2 2 3

0 0 000

1 1 1
0 1 1 3 2 1 5

1 10 10 5 386
2 1 5 3

2 3 2 3

l l l l

iF i
F

z z z z

al a a a

z z z z z z

M m
dx x dx Fx a x dx Fa adx

EI EI EI EI

F x x Fa x Fa x Fa x Fa
Fa Fx adx a

EI EI EI EI EI EI


             

 
           

 

   


 

Introducând valorile de mai sus în ecuația:  11 1 1 0FX    , obținem: 

 
3 3

1

725 386
0

3 3z z

a Fa
X

EI EI
  , 

 

de unde rezultă:   1

386
0,532

725
AX Y F F   . 

 

Exemplul 5.4 

Se consideră sistemul de bare din figura 5.14 la care se cunosc: 160a MPa  , 2100A mm , 

1000l mm  și 52,1 10E MPa  . Se cere să se determine:  

a) forțele din cele 5 bare ( 1N , 2N , 3N , 4N  și 5N );  

b) forța capabilă capF  din condiția de rezistență la tracțiune/compresiune ( max a  );  

c) deformarea barelor. 

 

Bara Aria Lungimea Modulul de elasticitate longitudinal 

1 A l E 

2 A l E 

3 2A l E 

4 A l E 

5 A l E 
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F 
2F 

60° 60° 

60° 60° 

 

 

 

 

 

B 

C N5 

N1 

N1 

N2 
N2 

N3 N3 

N4 
N4 

N5 

 
 

Figura 5.14 

 

Rezolvare: 

a) în fiecare din barele sistemului, urmare a încărcării din punctele B  și C , apar forțe 
axiale de reacțiune: 1N , 2N , 3N , 4N  și 5N  (figura 5.14). 

Considerând cele cunoscute din Mecanică, în punctele B  și C  pot fi scrise ecuațiile de 
echilibru static rezultând faptul că sistemul este o dată static nedeterminate (figura 5.15): 

 

2F 

60° 

60° 

 

 

 C 
N1 

N1 

N2 
N2 

N3 

x 

y 

 
a) 

 

F 

60° 

60° 

 

 

 

B 

N5 N3 

N4 
N4 

N5 

x 

y 

 
b) 

 

Figura 5.15 

 

 Pentru sistemul din figura 5.15,a: 

 

1 2 3

1 2

0; cos60 cos60 2 ;

0; sin60 sin60 0;

X N N N F

Y N N

    



  





 

 

 Pentru sistemul din figura 5.15,b: 

 

4 5 3

4 5

0; cos60 cos60 2 ;

0; sin60 sin60 0;

X N N N F

Y N N

    



  




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Se alege drept mărime static nedeterminată care urmează a fi găsită forța din bara , 

3N . Ca urmare, ecuația prin care se determină necunoscuta va fi: 

 

31 3 3 0FX     

 

unde componentele sunt:  

 

1 1
31

i i i

i i

n n l

E A
  ,  3 3X N , 1

3
i i i

F

i i

N n l

E A
   

 
Pentru început, pe sistemul de bază se introduc, în punctele B  și C , forțe unitare 

( 31 1n  ) pe direcția necunoscutei 3N  (figura 5.16) și se calculează componentele: 11n , 21n , 41n  

și 51n ; 

 

60° 

60° 

 

 

C N1 

N2 

n21 

1 

x 

y 

n31 = 1 

n11 

n21 

n11 

 
a) 

 

60° 

60° 

 

 

 

B 

x 

y 

n41 
n41 

n31 = 1 n51 
n51 

 
b) 

Figura 5.16 

 

 Pentru sistemul din figura 5.16,a: 

 

11 21 31

11 21

0; cos60 cos60 0;

0; sin60 sin60 0;

X n n n

Y n n

    


  




 

 

de unde rezultă: 11 21 1n n   ; 

 Pentru sistemul din figura 5.16,b: 

 

41 51 31

41 51

0; cos60 cos60 0;

0; sin60 sin60 0;

X n n n

Y n n

    


  




 

 

de unde rezultă: 41 51 1n n  ; 

Pe sistemul static de bază se introduce încărcările reale rezultând în bare forțele de 
reacțiune: 1FN , 2FN , 4FN  și 5FN  (figura 5.17) 
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2F 

60° 

60° 

 

 

C 
N1F 

N1F 

N2F 
N2F 

x 

y 

 
a) 

 

F 

60° 

60° 

 

 

B 

N5F 

N4F 
N4F 

N5F 

x 

y 

 
b) 

Figura 5.17 

 Pentru sistemul din figura 5.17,a: 

 

1 2

1 2

0; cos60 cos60 2 ;

0; sin60 sin60 0;

F F

F F

X N N F

Y N N

   


  




 

 

de unde rezultă: 1 2 2F FN N F   

 

 Pentru sistemul din figura 5.17,b: 

 

4 5

4 5

0; cos60 cos60 ;

0; sin60 sin60 0;

F F

F F

X N N F

Y N N

   


  




 

 

de unde rezultă: 4 5F FN N F   

În continuare se calculează componentele ecuației: 

 
2 2 2 2 2 2

1 1 1
31

( 1) ( 1) (1) (1) (1) 9

2 2
i i i i i

i i i i

n n l n l l l l l l l

E A E A EA EA EA EA EA EA


 
          

 

1
3

2 ( 1) 2 ( 1) (1) (1) 2i i i
F

i i

N n l F l F l F l F l Fl

E A EA EA EA EA EA

 
         

 

Se rezolvă ecuația:   3

9 2
0

2

l Fl
X

EA EA
  , 

 

de unde rezultă: 3 3

4

9

F
N X    

și apoi:  1 2

14

9

F
N N    și  4 5

13

9

F
N N   
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b) Se calculează tensiunile effective pentru fiecare bară în parte: 

 

1 2

14

9
a

F

A
     , de unde rezultă: 

9 9 100 160
10.285,71

14 14
aA

F N
  

    

 

4 5

13

9
a

F

A
     , de unde rezultă: 

9 9 100 160
11.076,92

14 13
aA

F N
  

    

 

3

4

9
a

F

A
   , de unde rezultă:  

9 9 100 160
36.000

4 4
aA

F N
  

    

 

Din analiza valorilor de mai sus, se alege  10.285,71capF N . 

 

c) Alungirile celor cinci bare sunt: 

 

1 1 2 2
1 2 5

1 1 2 2

14 14 10.285,71 1000
0,762

9 9 2,1 10 100

N l N l F l
l l mm

E A E A E A

 
       

  
 

 

5 54 4
4 5 5

4 4 5 5

13 13 10.285,71 1000
0,820

9 9 2,1 10 100

N lN l F l
l l mm

E A E A E A

 
       

  
 

 

3 3
3 5

3 3

4 4 10.285,71 1000
0,108

9 2 9 2,1 10 2 100

N l F l
l mm

E A E A

 
    

   
 

 

Exemplul 5.5 

Se consideră sistemul de bare din figura 5.18 la care se cunosc: 2600A mm , 1000l mm  și 
52 10E MPa  , 100F kN . Una din bare este mai scurtă cu o cantitate 0,3 mm  . Se cere să 

se determine:  

a) forțele din cele 3 bare ( 1N  , 2N   și 3N  ) dezvoltate urmare a prinderii barei mai 

scurte de articulație;  

b) forțele din cele 3 bare ( 1
FN , 2

FN  și 3
FN ) dezvoltate urmare a aplicării forței F ;  

c) forțele totale finale. 
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F 



30° 
45° 

  

 

l 

B 

 
Figura 5.18 

 

Rezolvare: 

a) Se consideră cazul în care forța F  nu este aplicată și se anulează imperfecțiunea barei 

. Ca urmare, în cele trei bare se vor dezvolta forțele axiale: 1N , 2N  și 3N       

(figura 5.19). 

 

30° 
45° 

  

 

l 

B 

N1 

N1 

N2 

N2 

N3 

N3 

 
Figura 5.19 

 

Aplicând ecuațiile de ecbilibru scrise în nodul B  rezultă: 

 

1 3

1 3 2

0; sin30 sin45 ;

0; cos30 cos45 0.

X N N

Y N N N

 

  

  


   




 

 

Așa cum rezultă, există un număr de două necunoscute (forțele din bare 1N  , 2N   și 

3N  ) putându-se scrie numai două ecuații de echilibru static. Ca urmare, sistemul este o data 

static nedeterminat. 
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 Se alege ca necunoscută ce se dorește a fi determinate forța 1N   din bara . Ținând 

cont de deformarea sistemului se poate scrie ecuația: 

 

11 1X   

 

 Alegând ca necunsocută forța 1N   sistemul static de bază devine cel din figura 5.20,a 

obținut prin „tăierea” barei . În punctul B  pe direcția forței necunoscute 1N   se introduce o 

forță unitară 11 1n   și se determină forțele unitare 21n  și 31n : 

 

11 31

11 31 21

0; sin30 sin45 ;

0; cos30 cos45 0.

X n n

Y n n n

  


   




 

 

 

45° 

 

 

l 

B 

 
a) 

 

30° 
45° 

 

 

l 

B 

n11 

n2 

n21 

n31 

n31 

 
b) 

Figura 5.20 

 

Din prima ecuație rezultă:  11 31

21

2 2
n n  ,  

de unde obținem:   31 0,707n  . 

Din a doua ecuație se obține:  21 11 31cos30 cos45 1,573n n n    . 

Ținând cont de geometria sistemului, lungimile celor trei bare sunt: 

 

1 1,154
cos30

l
l l  , 2l l , 3 2 1,414l l l   

 

Pe ba za celor de mai sus, se obține: 

 
23

2 2 21
11

1

4,335
1 1,154 ( 1,573) 1 0,707 1,414i i

i i i

n l l l

E A EA EA




            
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Înlocuind în ecuația de echilibru elastic, rezultă: 

 
5

1 1

11

0,3 2 10 600
8.304,49

4,335 4,335 1000

E A
X N N

l


 



    
    

 
 

 

Din ecuațiile de echilibru obținem: 

 

3 1

sin30
5.873,05

sin45
N N N    și 2 1 3cos30 cos45 11.343,93N N N N       

 

Pe baza forțelor axiale determinate mai sus, tensiunile din fiecare bară vor fi: 

1
1

8.304,49
13,84

600

N
MPa

A


    ,  

2
2

11.343,93
18,90

600

N
MPa

A





     

3
3

5.873,05
9,78

600

N
MPa

A


     

 

b) După compensarea imperfecțiunii de montaj se aplică forța F .  

Ca și în situația precedent, în cele trei bare apar forțe de reacțiune, sistemul fiind static 
nedeterminat. Se consideră același sistem static de bază confiderându-se drept mărime 
necunoscută care se dorește a fi determinate forța din bara  ( 1FN ). Sistemul este prezentat 

în figura 5.21. 

 

 

45° 

 

 

l 

B 

N2F 

N2F 

N3F 

N3F 

F 

 
Figura 5.21 

 

Din scrierea ecuațiilor de echilibru în nodul B , rezultând: 2FN F ; 3 0FN  , 1FN  fiind egală cu zero. 

Ecuația de calcul a metodei forțelor este:   

11 1 1 0FX     
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Componntele acestei ecuații fiind: 1 1
FX N  - forța din bara  

 
23

2 2 21
11

1

4,335
1 1,154 ( 1,573) 1 0,707 1,414i i

i i i

n l l l

E A EA EA




            

 

1
1

( 1,573) 0(0,707)1,414 1,573iF i i
F

i i

N n l F l l Fl

E A E A E A E A


       

 

Ca urmare, forța care apare în bara  va fi egală cu: 

 

1

4,335 1,573
0

l Fl
X

EA E A
  ,  

 

de unde rezultă:    1 1

1,573
0,362 36.277,6

4,335
F F

X N F N     

 

Celelalte două component de din barele  și  se determină cu relațiile: 

 

2 2 21 1 1,573 0,362 0,43 43.057,4F
FN N n X F F F N        

 

3 3 31 1 0 0,707 0,362 0,256 25.600F
FN N n X F F N        

 

Tensiunile care se dezvoltă vor fi:  

1
1

36.277,6
60,46

600

F

F

N
MPa

A
    ,  

 

2
2

43.057,4
71,76

600

F

F

N
MPa

A
    ,  

 

3
3

25.600
42,60

600

F

F

N
MPa

A
    . 

 

c) Forțele totale din cele trei bare vor fi: 

 

1 1 1 8.304,49 36.277,6 44.582,09FN N N N N N      

 

2 2 2 11.343,93 43.057,4 31.713,47FN N N N N N       

 

3 3 3 5.873,05 25.600 31.473,05FN N N N N N      
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Corespunzător acestor forțe, tensiunile normale rezultante, din bare, sunt: 

 

1
1

44.582,09
74,303

600

N
MPa

A
    ,  

2
2

31.713,47
52,855

600

N
MPa

A
    ,  

3
3

31.473,05
52,455

600

N
MPa

A
    . 

 

Exemplul 5.6 

Se consideră sistemul de bare din figura 5.22 la care se cunosc: barele sunt de aceeași secțiune 
2400A mm , lungimea 1500l mm , 52 10E MPa  , 120a MPa  . Se cere să se determine:  

a) forțele din cele 3 bare ( 1N , 2N  și 3N ) dezvoltate urmare a prinderii barei mai scurte 

de articulație;  

b) forța capabilă capF  din condiția de rezistență ( max a  );  

c)  deplasările pe orizontală Bu  și pe vertical Bv  ale punctului B . 

 

 

F 

30° 60° 

 

 

 l 

B 

30° 

N1 

N1 

N2 

N2 

N3 

N3 

x 

y C D H 

 
 

Figura 5.22 

 

a) Din scrierea ecuațiiloe de echilibru în nodul B  rezultă: 

 

1 2 3

1 2 3

0; sin30 sin30 sin60 0;

0; cos30 cos30 cos60 ;

X N N N

Y N N N F

     


   




 

 

Din ecuațiile de echilibru rezultă că există trei necunoscute 1N , 2N  și 3N  și două ecuații 

de echilibru. Ca urmare, sistemul este static nedeterminat. 

Se alege ca mărime necunoscute care urmează a fi determinată forța 2N , din bara . Se  

consideră faptul că deplasarea în articulația din punctual D  este zero și se scrie ecuația: 
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21 2 2 0FX    , 

 

în care, 2 2X N , iar componentele 21  și 2F  vor fi determinate cu jutorul Sistemului Static de 

Bază (SSB). 

Considerând ca mărime necunoscută, care urmează a fi determinate, forța 2N , SSB se 

obține din sistemul inițial la care se „rupe” legătura necunoscutei, adică este  înlăturată bara 
 (figura 5.23). 

 

 

30° 60° 

 

 l 

B x 

y 
C D H 

 
Figura 5.23 

 

În continuare, pe SSB vor fi aplicate, pe rând, o forță unitară în nodul B , pe direcția 
forței 2N  (figura 5.24,a) și forța F  (figura 5.24,b). 

 

 

30° 

60°  

 l 

B x 

y 
C D H 

B 

n11 

n11 

n21 = 1 

n31 

n31 

30° 

 
a) 

 

30° 60° 

 

 l 

B x 

y 
C D H 

F 

 

 

N1F 

N1F 

N3F 

N3F 

 
b) 

Figura 5.24 

 

Scriind ecuațiile de echilibru corespunzător sistemului de forțe unitare din              
figura 5.24,a rezultă: 
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11 21 31

11 21 31

0; sin30 sin30 sin60 0;

0; cos30 cos30 cos60 0;

X n n n

Y n n n

     


   




 

 

sau 

11 31

11 31

0; 0,5 0,866 0,5;

0; 0,866 0,5 0,866;

X n n

Y n n

       


     




 

rezultând valorile: 

11 0,5n   , 21 1n  , 31 0,866n    

 

Scriind ecuațiile de echilibru corespunzător sistemului de forțe din figura 5.24,b 
rezultă: 















;60cos30cos;0

;060sin30sin;0

31

31

FNNY

NNX

FF

FF





 

sau 












;5,0866,0;0

;0866,05,0;0

31

31

FNNY

NNX

FF

FF
 

 

rezultând valorile:  FN F 866,01  , 02 FN , FN F 5,03   

 

 Lungimile celor trei bare sunt: 

 

1 2 1,154
cos30

l
l l l   , 3 2

cos60

l
l l  ; 

 

Coeficienții din ecuația de echilibru elastic sunt: 

 

     
2 2 22

1
21

0,5 1,154 1 1,154 0,866 2 2,942i i

i i

l l ln l l

E A EA EA EA E A


    
      

 

1
2

0,866 ( 0,5) 1,154 0 1 1,154 0,5 ( 0,866) 2 1,365iF i i
F

i i

N n l F l l F l F l

E A EA EA EA E A

       
        

 

Introducând coeficienții de mai sus în ecuația de echilibru elastic, rezultă: 

 

2

2,942 1,365
0

l F l
X

E A E A
   
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din care se obține: 

2 2 0,464X N F   

 

Celelalte două component de din barele  și  se determină cu relațiile: 

 

1 1 11 2 0,866 0,5 0,464 0,634FN N n X F F F       

3 3 31 2 0,5 0,866 0,464 0,098FN N n X F F F       

 

b) În continuare, se scrie condiția de rezistență pentru fiecare bară, în parte: 

 

1
1

0,634
a

N F

A A
    , de unde rezultă: 1,577cap aF A  

 

2
2

0,464
a

N F

A A
    , de unde rezultă: 2,155cap aF A  

 

3
3

0,098
a

N F

A A
    , de unde rezultă: 10,204cap aF A  

 

rezultând:  1,577 1,577 120 400 75.696cap aF A N      

 

c) Pentru determinarea deplasărilor punctului B  se vor introduce forțe unitare pe SSB, 
pe direțiile orizontală, pentru Bu  (figura 5.25,a), și vertical, pentru Bv                     (figura 

5.25,b). 

 

30° 60° 

 

 l 

B x 

y 
C D H 

 

 

n11 

n11 

n31 

n31 

1 

 
a) 

 

30° 

60°  

 l 

B x 

y 
C D H 

B 

n11 

n11 

n31 

n31 

1 
 

b) 

 

Figura 5.25 

 

Se calculează noile valori pentru forțele unitare din cele două bare  și . 
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Scriind ecuațiile de echilibru corespunzător sistemului de forțe unitare din               
figura 5.25,a rezultă: 

 

11 31

11 31

0; sin30 sin60 1 0;

0; cos30 cos60 0;

X n n

Y n n

     


  




 

sau 

11 31

11 31

0; 0,5 0,866 1;

0; 0,866 0,5 0;

X n n

Y n n

       


    




 

 

rezultând valorile: 

    11 0,5n   și  31 0,866n    

Deplasarea pe orizontală a punctului B  este egală cu: 

 

1 0,634 0,5 1,154 0,098 ( 0,866) 2 0,196i i i
B

i i

N n l F l F l Fl
u

E A EA EA EA

    
     

 

Înlocuind cu valori numerice, se obține:  

 

5

0,196 75.696 1.500
0,278

2 10 400
Bu mm

 
 

 
 

 

Scriind ecuațiile de echilibru corespunzător sistemului de forțe unitare din              
figura 5.25,b rezultă: 

 

11 31

11 31

0; sin30 sin60 0;

0; cos30 cos60 1;

X n n

Y n n

    


  




 

 

sau 

11 31

11 31

0; 0,5 0,866 0;

0; 0,866 0,5 1;

X n n

Y n n

      


    




 

 

rezultând valorile: 11 0,866n  , 31 0,5n   

Deplasarea pe orizontală a punctului B  este egală cu: 

 

1 0,634 0,866 1,154 0,098 0,5 2 0,731i i i
B

i i

N n l F l F l Fl
v

E A EA EA EA

   
     

 

Înlocuind cu valori numerice, se obține:  
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5

0,731 75.696 1.500
1,037

2 10 400
Bv mm

 
 

 
 

 

Observație:  

Prin aplicarea forțelor unitare, în punctul B , într-un anumit sens s-a presupus că deplasarea 
ar fi în sensul respective. Ca urmare, dacă valoarea obținută este pozitivă concluzia este că 
deplasarea este în sensul forței unitare aplicată.  

 

Deplasarea totală a punctului B  este: 

 

2 2 2 20,278 1,037 1,073B B Bu v mm       
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STABILITATEA STATICĂ 
A BARELOR DREPTE 
ZVELTE 

6 

 

 

 

 

 

6.1. Introducere 
 

Elementele structurale care sunt încărcate cu sarcini de compresiune 
pot fi împărțite în două tipuri, în funcție de lungimile lor relative și de 
dimensiunile transversale: 

a) Bare scurte și groase, definite drept coloane care, de obicei, se 
distrug prin zdrobire atunci când tensiunea admisibilă de 
compresiune a materialului este depășită; 

b) coloane lungi și subțiri sau tije care cedează și flambează cu puțin 
timp înainte de a fi atinsă tensiunea admisibilă de compresiune. 

Barele foarte lungi și de scțiune mică (subțiri) sunt definite a fi bare 
zvelte. În cazul barelor zvelte, sub acțiunea forțelor de compresiune, acestea 
pot să-și piardă forma iniţială de echilibru. Forma de echilibru pe care o au 
barele zvelte, sub acțiunea eforturilor de compresiune poate fi stabilă sau 
inslabilă. Stabilitatea/instabilitatea statică a barelor zvelte se referă la poziţia 
deformată a unui sistem elastic ca stare de echilibru sub acţiunea statică a 
unor forţe exterioare cunoscute. 

O bară zveltă este stabilă dacă în poziţie deformată printr-o acțiune 
externă perturbatoare, aceasta se deformează mai mult dar revine la forma 
inițială deformată, când acțiunea perturbatoare încetează. Dacă după acțiunea 
perturbației bara nu revine în poziția inițială, atunci sistemul este instabil. 

Pierderea stabililăţii sistemelor deformabile (bare zvelte, plăci etc.) sub 
acţiunea încărcărilor se numeşte flambaj. 

Flambajul barelor zvelte poate avea loc din mai multe dintre 
următoarele motive: 

a) bara nu este perfect dreaptă în poziție inițială, de montaj; 

b) încărcarea nu este aplicată exact de-a lungul axei barei; 
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c) în cazul barelor compuse din mai multe componente, realizate din 
materiale diferite, este posibil ca materialul uneia din componente 
să aibă o tensiune admisibilă inferioară celorlate și să cedeze; 

Pericolul cel mai mare în cazul fenomenulului de flambj îl reprezintă 
apariția bruscă a deformațiilor mari, aspect care pote avea ca și consecință 
directă ruperea barei. 

 

 
Figura 6.1 

 

Se consideră bara dreaptă din figura 6.1 solicitată la compresiune de 
forțele P . În bară se dezvoltă tensiuni normale negative ( 0  ) prezentând 

pericolul dezvoltării fenomenului de flambaj.  

În cazul în care, forța P atinge o valoare egală cu  forța critică de 
flambaj fP , bara își va pierde pierde forma dreaptă de echilibru şi flambează. 

Bara se va încovoia apărând deformații foarte mari (figura 6.1).  Forței critice 
de flambaj îi corespunde o tensiune critică de flambaj f , care se calculează 

conform relației: 

 

f

f

P

A
  ,    (6.1) 

 

unde A  este aria secțiunii transversale. 

În cazul în care, asupra barei acționează o forță P  mai mică decât forța 
critică de flambaj fP , atunci bara nu va mai flamba. Legătura dintre încărcarea 

P  și forța critică de flambaj fP  este dată de coeficientul de flambaj fc , prin 

relația: 
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f

f

P
P

c
     (6.2) 

 

 Coeficientul de flambaj fc  are valori supraunitare acestea fiind stabilite 

în funcție de periculozitatea pe care o au, în funcționare, diferite tije 
componente ale echipamentelor industriale și nu numai.  

Valorile coeficientului de siguranță sunt cu atât mai mari cu cât piesele 
au o importanță crescută în asigurarea siguranței în funcționare. 

Echilibrul unei bare drepte zvelte comprimate poate fi de două feluri: 

a) echilibru stabil, caz în care fP P , bara după deformare revenind la 

forma inițială în momentul în care cauza perturbatoare încetează; 

b) echilibru instabil fP P  bara rămâne deformată în momentul în 

care cauza perturbatoare încetează; 

Cel mai mare pericol al flambajului îl reprezintă faptul că se produce 
brusc neexistând posibilitatea luării în avans a unor măsuri de prevenire. 
Fenomenul se petrece în special la construcții metalice, de tip grinzi cu 
zăbrele, sau la sisteme de susținere. 

Pentru analiza fenomenului de falmbaj au fost elaborate elaborate o 
serie de teorii aproximative pe baza cărora sunt determinate mărimile care 
definesc starea de flambaj. 

 Calculul la flambaj se realizează scriind relaţiile de echilibru pentru 
starea deformată, ținându-se cont de condițiile de legătură ale barelor. 
Calculul se realizează pe baza teoriei de ordinul II, caz în care se admite 
expresia aproximativă a curburii. 

 

6.2. Forța critică de flambaj a barei drepte solicitată la 
compresiune 

 

6.2.1. Considerații generale 

 

Relația de calcul a forţei critice de flambaj, pentru o bară dreaptă 
comprimată, a fost calculată prima dată de L. Euler (1744). Determinarea 
acestei forțe a fost realizată prin metoda statică. 

 Determinarea acestei forțe ține cont de tipul de legături existente la 
capetele barelor. Pornind de la considerente practice, provenite din realitatea 
înconjurătoare, au stabilite patru cazuri de legături (figura 6.2): 
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a) cazul I - bară încastrată la un capăt şi liberă la celălalt                 
(figura 6.2,a); 

b) cazul II (caz fundamental) - bară articulată la ambele capete    
(figura 6.2,b); 

c) cazul III - bară articulată la un capăt şi încastrată la celălalt      
(figura 6.2,c); 

d) cazul IV - bară încastrată la ambele capete (figura 6.2,a). 

Metoda statică este o metodă analitică de determinare a forţei critice de 
flambaj bazată pe ecuația aproximativă a fibrei medii deformate: 

 
2

2
iMd v

dx EI
  .    (6.3) 

din care rezultă: 

     
2

2i

d v
M EI

dx
  .   (6.4) 

 

Pornind de la această ecuație, prin integrare și considerarea condițiilor 
de legătură de la capete (figura 6.2), pentru fiecare caz în parte, rezultă o 
anumită formă deformată și o formulă de calcul a forței critice de flambaj. 

 

l 

P 

 
a) 

 

 

l 

P 

 
b) 

 

l 

P 

 
c) 

 

l 
P 

 
d) 

 

Figura 6.2 
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În calcule se admit următoarele ipoteze de calcul: 

a) modulul de rigiditate EI  este constant; 

b) distanţa dintre cele două capete ale barei este aproximativ egală în 
starea flambată cu lungimea iniţială a barei; 

c) greutatea barei este neglijată. 

 

6.2.2. Cazul fundamental (cazul II – figura 6.2,b) 
 

Se consideră bara din figura 6.3 articulată la ambele capete la capete. 
Bara este comprimată cu forța critică de flambaj fP . 

 

 

l 

x 

v 

   

y 

Pf Pf 

 
 

 
Figura 6.3 

 

Urmare a acțiunii forței fP  bara se va deforma intrând în stare 

flambată. Ca urmare a acțiunii forței, la o distanță oarecare x , față de 
articulația din punctul , bara se deformează foarte mult, valoarea săgeții 
fiind v  . Ca urmare, în punctul respectiv se va dezvolta un moment încovoietor 

generat de forța fP : 

 

i fM P v      (6.5) 

 

unde v  reprezintă săgeata, foarte mare, a deformării barei. 

Introducând relația momentului de încovoiere din (6.5) în relația (6.4) 
rezultă ecuația: 

 
2

2f

d v
P v EI

dx
   , 
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de unde rezultă: 

     
2

2
0fP vd v

dx EI
  .   (6.6) 

 

 Pentru ușurința în calcul se va face notația: 

 

   2fP

EI
     (6.7) 

 

și, ca urmare, ecuația diferențială (6.7) devine: 

 
2

2

2
0

d v
v

dx
  ,   (6.8) 

 

având soluția de forma: 

 

   sin cosv A x B x       (6.9) 

 

unde, A  și B  sunt două constant care pot fi determinate din condițiile de 
legătură din articulațiile  și : 

 

0 0;

0.

x v

x l v

  


  
    (6.10) 

 

 Pe baza condițiilor de legătură (6.10), pentru cele două constante, 
rezultă următoarele valori: 

a) din prima condiție din (6.10)   0B  ;   (6.11) 

b) din a doua condiție din (6.10)    sin 0A l   . (6.12) 

Valoarea constantei A  trebuie să fie diferită de zero  0A  , altfel 

nexistând flambaj.  

Ca urmare, rezultă că pentru a fi îndeplinită cea de-a doua condiție 
(6.12) este necesar să avem: 

 

 sin 0l   ,    (6.13) 
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care conduce egalitatea: 

     l n        (6.14) 

 

unde „n” este un număr pozitiv, întreg. 

 Din relația de egalitate (6.14) se obține:  

 

n

l





     (6.15) 

 

iar din (6.7) rezultă relația de calcul a forței critice de flambaj: 

 
2 2

2f

n EI
P

l


 .    (6.16) 

 

 Considerând în relația (6.16) valoarea 1n  rezultă starea flambată din 

figura 6.3.  

În relația (6.16) pot fi considerate și alte valori pentru „ n ” 
( 2,3,4,...)n , rezultând alte forțe de flambaj dar acestea nu se mai realizează  

atâta timp cât bara a flambat pentru forța critică de flambaj cea mai mica. 

În relația (6.16), I  reprezintă momentul de inerţie axial central al 
secţiunii transversale care corespunde direcţiei faţă de care flambează bara.  

În cazul în care, condiţiile de legătură ale barei sunt identice în jurul 
tuturor axelor centrale ale secţiunii transversale, atunci în calcule trebuie 
considerat momentul de inerţie axial central minim al secţiunii transversale.  

Flambajul se produce în jurul acelei axe centrale, faţă de care bara 
prezintă rigiditatea minimă.  

Ca urmare, relația (6.16) de calcul a forţei critice de flambaj, în cazul 
fundamental, devine: 

 
2

min
2f

EI
P

l


     (6.17) 

 

În cazul fundamental starea flambată corespunde unei semiunde, 
având lungimea egală, cu aproximaţie, cu cea a barei. Lungimea 
corespunzătoare unei semiunde, adică distanţa dintre două puncte 
consecutive de inflexiune ale stării flambate, se numeşte lungime de flambaj.  
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Ca urmare, lungimea de flambaj este egală cu lungimea barei, iar relația 
(6.17) va avea forma: 

 
2

min
2f

f

EI
P

l


 ,    (6.18) 

 

unde, prin fl  s-a notat lungimea de flambaj. 

 

6.2.3. Cazul unei bare încastrată la un capăt și liberă la celălalt 
(cazul I – figura 6.2,a) 

 

Starea de încărcare și deformare, în acest caz, este prezentată în figura 
6.4. Ca și în cazul precedent se ajunge la aceeași ecuație diferențială (6.8) cu 
soluția (6.9): 

 

   sin cosv A x B x      

 

l 

x 

v 

v 

Pf 

x 

lf 

 

 

 
Figura 6.4 

 

În acest caz, condițiile de legătură sunt: 

 

0 0;

0.

x v

dv
x l

dx

  



  


   (6.19) 
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Pe baza condițiilor de legătură (6.19), pentru constantele A  și B  
rezultă următoarele valori: 

a) din prima condiție din (6.19)   0A  ;   (6.20) 

b) din a doua condiție din (6.19)    cos 0B l   . (6.21) 

Valoarea constantei B  trebuie să fie diferită de zero  0B  , altfel 

neexistând flambaj.  

Ca urmare, în relația (6.21) este necesar să fie îndeplinită condiția: 

 

 cos 0l   ,    (6.22) 

 

din care se obține: 

     
 2 1

2

n
l




 
  ,   (6.23) 

 

unde „ n ” este un număr întreg, rezultând: 

 

 2 1

2

n

l




 
    (6.24) 

 

Combinând relațiile (6.7) și (6.24), pentru 1n  obținem: 

 
2

min
24

f

EI
P

l


     (6.25) 

 

în acest caz, lungimea de flambaj fiind: 2fl l .  (6.26) 

 

6.2.4. Cazul unei bare încastrată la un capăt și articulată la 
celălalt (cazul III – figura 6.2,c) 

 
Se consideră bara din figura 6.5, articulată în punctul  și  încastrată în 

punctul .  
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Figura 6.5 

 

În acest caz lungimea de flambaj este considerate a fi egală cu: 

 

0,7fl l     (6.27) 

 

iar forța critică de flambaj data de (6.18) devine: 

 

2
min

2

2
f

EI
P

l


  .   (6.28) 

 

6.2.5. Cazul unei bare încastrată la ambele capete (cazul IV – 
figura 6.2,d) 

 

Se consideră bara din figura 6.6, încastrată în ambele puncte  și  . 

 
 

0,5lf 

l 

0,5lf 0,5lf 0,5lf 

  Pf 

 
Figura 6.6 
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În acest caz, lungimea de flambaj este considerate a fi egală cu: 

                          

  
1

2
fl l     (6.29) 

 

iar forța critică de flambaj dată de (6.18) devine: 

 

                           
2

min
2

4
f

EI
P

l


    (6.30) 

 

6.2.6. Concluzii 
 

 Comparând valorile forțelor critice de flambaj și a lungimilor de 
flambaj , pentru toate cele patru cazuri, se poate sintetiza tabelul 6.1. 

 

Tabelul 6.1 

Mărime Cazul de flambaj 

I II III IV 

Forța critică de 
flambaj 

2
min

24
f

EI
P

l


  

2
min

2f

EI
P

l


  

2
min

2

2
f

EI
P

l


  

2
min

2

4
f

EI
P

l


  

Lungimea de 
flambaj 

2fl l  fl l  0,7fl l  0,5fl l  

 

 Comparând relațiile de calcul ale forțelor critice de flambaj, din          
tabelul 6.1, rezultă următoarea relației de inegalitate: 

 

, , . ,f I f II f III f IVP P P P   . 

 

 Relația lui Euler poate fi generalizată, sub forma: 

 

2

2

min

f

f

I
P E

l


 
  

 
 

   (6.31) 
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6.3. Domeniul de valabilitate al relației lui Euler 
 

Pentru a bară cu aria secțiunii transversale egală cu A  și tensiunea 
critică de flambaj f , din ecuația (6.31) rezultă: 

 
2

2 2
2

2 2
minmin min

f

f

f f

P E I i E
E

A A l l

 
 



   
         

   

 (6.32) 

 

unde:      fl

i
  ,   (6.33) 

 

este definit a fi coeficientul de zvelteță, iar „ i ” este raza de inerție a secțiunii 
transversale. 

Din relația (6.32) este evident că, în cazul în care bara este lungă și 
subțire ( fl i  este mare) atuci f  este mic. Ca urmare, coloanele de lungime 

mică și secțiune mare au un raport fl i   mică și o valoare mare a lui  f . 

Valoarea maximă a coeficientului de zevelteță pentru o secțiune dată este: 

 

 max

minmax

f fl l

i i


 
  
 

.   (6.34) 

 

În figura 6.7 este prezentat un graphic al variației tensiunii f  în 

raport cu fl i  pentru un material particular. Pentru o valoare fl i  mai mică 

decât anumite valori particulare, care depend de material, o bară va flamba la 
o valoare a tensiunii mai mică decât cea considerate critică f , determinate pe 

baza teoriei lui Euler.  

În figura 6.7, cu linie continua este prezentată variația conform teoriei 
lui Euler iar cea cu linie punctată situația reală. 

Din relația (6.32) rezultă că tensiunea critică de flambaj depinde atât de 
material (prin modulul de elasticitate longitudinal E ) cât și de coeficientul de 
zvelteță. 
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f 

lf /i 

Teoria lui Euler 

Tensiunea reală 

 
 

Figura 6.7 

 

Relația lui Euler este valabilă numai pentru defomații din domeniul 
elastic (domeniu în care legea lui Hooke este valabilă). 

Relația lui Euler poate fi utilizată numai dacă tensiunea critică de 
flambaj este mai mică comparativ cu tensiunea corespunzătoare limitei de 
poporționalitate p : 

 
2

2
max

f p

E
 


  .   (6.35) 

 

Pe baza relației (6.35) poate fi calculate coeficientul de zvelteță 0  care 

limitează domeniul de valabilitate a relației lui Euler: 

 

2

max 0

p

E
 


    (6.36) 

 

 Pornind de la relația (6.36) pot fi definite două cazuri de flambaj: 

a) max 0  , în acest caz flambajul este unul elastic iar fenomenul 

are loc conform relației lui Euler; 

b) max 0  , este cazul pentru care flambajul are loc în doemniul 

plastic iar relația lui Euler nu mai este valabilă. 

Calculul la flambaj în domeniul plastic este realizat folosind diferite 
relații care au fost dezvoltate de diferiți autori: F. Iasinski, L. Tetmajer,             
M. Rankine, J. B. Johnson etc. La modul general, indifferent de autor, relațiile au 
una din următoarele forme: 
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2

;

,

f

f

a b

A B C

 

  

 


  

   (6.37) 

 

unde  , , , ,a b A B C  sunt constante care depind de material. 

  În figura 6.8 sunt prezentate domeniile de calcul ale tensiunii critice de 
flambaj f . În figura 6.8 sunt făcute următoarele notații: a  - tensiunea 

admisibilă (limita de elasticitate), p  - tensiunea de proporționalitate (limita 

de proporționalitate), c - tensiunea de curgere (limita de curgere) 

 

Linia dreaptă – relatia 
Tetmajer, Iasinski 

Parabola lui 
Euler 
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a 

Flambaj elastic 

 
Figura 6.8  

 

6.4. Procedura de rezolvare a problemelor de flambaj 
 

 Problemele de flambaj sunt orientate spre două aspect esențiale: 
probleme de verificare și probleme de dimensionare.  

 

6.4.1. Probleme de verificare 

 

 În cazul acestor probleme se verifică dacă coeficientul de siguranță fc  

este mai mare comparative cu unul prescris pc .  
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 În primă fază se verifică domeniul de flambaj, pe baza datelor 
geometrice ale barei analizate. Ca urmare, se calculează valoarea coeficientului 
de zvelteță putând apărea următoarele situații: 

a) 0  , caz în care ne situăm în domeniul elastic fiind valabilă 

relația lui Euler 2

2

min

f

f

I
P E

l


 
  

 
 

și bara este stabile dacă 

f

f p

P
c c

P
  ; 

b) 1 0    , caz în care se folosește relația (6.37), forța de flambaj 

fiind f fP A  și este necesar să se verifice condiția f

f p

P
c c

P
  ; 

c) 1  , este cazul în care există compresiune pură nefiind cazul de 

calcul de flambaj. 

 

Exemplul 6.1 

Se consideră bara din OL37, cu 0 105  , de lungime 3l m  și de 

secțiune circular de diametru 80d mm  (figura 6.9). Bara este încastrată la un 

capăt și liberă la celălalt. Forța care acționează asupra barei este 75P kN , 

coeficientul de siguranță prescris fiind 7pc  . Se cere să se verifice bara la 

flambaj. 

 
P 

l 

d 

 
 

Figura 6.9 
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Rezolvare: 

Pentru verificare este necesară calcularea coeficientului de flambaj fc  și 

compararea lui cu cel prescris pc . 

Primul pas în rezolvare este determinarea domeniului în care are loc flambajul 
barei. Pentru aceasta se calculează coeficientul de zvelteță   al barei: 

 

04
min

2

4 4 4 3000
150

804
464

f f f f f

z

l l l l l l

di d dI d

A d

 



         . 

 

 Ca urmare a faptului că 0   flambajul are loc în domeniul elastic, 

forța de flambaj calculându-se cu relația:  

 
2 2 5 4

min
2 2

2 10 80
440.978,15( )

64 3000
f

f

EI
P N

l

     
  


. 

 

 Ținând cont de valorile lui fP  și P  rezultă un coeficient de siguranță 

de: 

 

3

440.978,15
5,879

75 10

f

f p

P
c c

P
   


, 

 

ceea ce conduce la concluzia că bara nu este stabile și trebuie mărită secțiunea. 
Se alege o valoare a diametrului 90d mm . Pentru aceasta se recalculează 

coeficientul de zvelteță: 

 

0

min

4 3000
133,33

90

fl

i
 


     

 

Fenomenul de flambaj rămânînd în domeniul elastic, forța de flambaj 
fiind acum: 

2 2 5 4
min

2 2

2 10 90
706.361,74( )

64 3000
f

f

EI
P N

l

     
  


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iar coeficientul de flambaj devine:  

 

3

706.361,74
9,41

75 10

f

f p

P
c c

P
   


 

 
Exemplul 6.2 

Se consideră bara din OL50, cu 0 89  , de lungime 2l m  și de secțiune 

pătrată, cu latura 60a mm  (figura 6.10). Bara este încastrată la un capăt și 

articulate la celălalt. Forța care acționează asupra barei este 100P kN , 

coeficientul de siguranță prescris fiind 9pc  , iar tensiunea de flambaj se 

calculează cu relația: 328,5 0,61f   . 

Se cere să se verifice bara la flambaj. 

 
P 

l 

a 

a
 

 
Figura6.10 

 

Rezolvare: 

Pentru verificare este necesară calcularea coeficientului de flambaj fc  și 

compararea lui cu cel prescris pc . Pentru început se determină domeniul în 

care are loc flambajul barei, calculându-se coeficientul de zvelteță   al barei: 
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04 2 2

min

2

0,7 0,7 2000
80,83

1 60

12 12 12

f f f

z

l l l l

i I a a

aA

 
 

        . 

 

 Ca urmare, flambajul are loc în domeniul plastic și forța de flambaj se 
calculează cu relația: 

 
2(328,5 0,61 80,83) 60 279,19 3600 1.005.097,32( )f fP A N         

 

Coeficientul de flambaj devine: 

 

5

1.005.097,32
10,05

100

f

f p

P
c c

P
    . 

 

Ca urmare bara este stabilă la flambaj. 

 

6.4.2. Probleme de dimensionare 

 

 În acest caz se parcurg următorii pași: 

Pasul 1 – se consideră, pentru început, că flambarea are loc în domeniul 
elastic. Astfel, se calculează momentului de inerție necesar: 

 
2

min 2

f pP l c
I

E

 
 . 

 

Pasul 2 – se determină din valoarea momentului de inerție minim minI , 

calculat la pasul 1, dimensiunile geometrice ale secțiunii transversal și se 
calculează coeficientul de zvelteșă   corespunzător. 

 

Pasul 3 – se compară coeficientul de zvelteță cu valoarea 0 , care delimitează 

zona domeniului elastic.  Există două situații: 

a) 0  , fenomenul de flambaj este în domeniul elasticși 

dimensionarea este considerate a fi finalizată iar dimensiunile 
secțiunii transversale calculate pot fi folosite în continuare; 
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b)  1 0    , este necesar să fie verificat coeficientul de siguranță (se 

compară cel corespunzător dimensiunilor calculate cu cel prescris 

pc ). Dacă f pc c  este necesar să se mărească dimensiunile secțiunii 

transversale până când coeficientul de siguranță fc  devine mai 

mare ca cel prescris pc ; 

c) 1  , calculul se face pentru compresiune pură. 

 

Exemplul 6.3 

Se consideră bara din OL37, cu 0 105  , de lungime 2l m  și de 

secțiune dreptunghilară, cu laturile a  și 2a  (figura 6.11). Bara este încastrată 
la amble capate.  

Forța care acționează asupra barei este 150P kN , coeficientul de 

siguranță prescris fiind 6pc  , iar tensiunea de flambaj se calculează cu relația: 

304,5 1,12f   . Se cere să se dimensioneze. 

 
P 

l 

a 

2
a

 

z 

y 

O 

 
 

Figura 6.11 

  
Rezolvare: 

Calculul se pornește de la ipoteza flambajului în domeniul elastic.Pentru 
început, se calculează valoarea momentului de inerție minim: 
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2 3 2
4

min 2 2 5

150 10 (0,5 2000) 6
455.945,32( )

2 10

f pP l c
I mm

E 

     
  

 
. 

 

În cazul secțiunii considerate, cele două momente de inerție axiale 
sunt:  

 
3 4(2 ) 8

12 12
z

a a a
I


   și 

3 42 ( ) 2

12 12
y

a a a
I


   

 

și ca urmare, momentul de inerție axial minim este yI . 

 Pe baza valorilor calculate rezultă:  

 
4

42
455.945,32( )

12

a
mm  

 

de unde se obține cota: 40,67( )a mm . 

În continuare se calculează coeficientul de zvelteșă   corespunzător: 

 

04 2
min

2

0,5 0,5 2000
85,175

2 1 40,67

12 2 12

fl l

i a

a

 
 

     . 

 

 Ca ufmare, ipoteza flambajului în domeniul elastic nu se verifică și se 
continua calculul în domeniul plastic. Se calculează forța de flambaj ținând 
cont de valoarea coeficientului de zvelteță obținut: 

 
2 2(304,5 1,12 ) 2 (304,5 1,12 85,175) 2 40,67 691.736,48( )f fP A a N          

 

Coeficientul de siguranță la flambaj devine:  

 

4

691.736,48
4,611

15 10

f

f p

P
c c

P
   


. 
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Deoarece coeficientul de siguranță obținut este mai mic comparative cu 
cel prescris, este necesar să se mărească secțiunea. Se alege o valoare 

46a mm .  

Se recalculează coeficientul de zvelteță:   

 

02

0,5 2000
75,306

46

12

 


   , 

 

flambajul are loc tot în domeniul plastic, forța de flambaj fiind: 

 
2 2(304,5 1,12 ) 2 (304,5 1,12 75,306) 2 46 931.705,61( )f fP A a N            

 

Coeficientul de siguranță la flambaj are noua valoare de:  

 

4

931.705,61
6,21

15 10

f

f p

P
c c

P
   


. 

 

Ca urmare bara este stabilă la flambaj. 

 

6.5. Metoda tensiunii admisibile 
 

Această metodă este folosită cu precădere pentru problem de verificare 
și pentru determinarea forței de flambaj critice admisibile fP . În concordanță 

cu această metodă condiția de stabilitate este: 

 

f

af

P

A
     (6.38) 

 

unde tensiunea admisibilă de flambaj af  se calculează cu relația: 

 

af a   ,    (6.39) 
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unde   este coeficientul de flambaj și a  este tensiunea admisibilă la 

compresiune a materialului.  

Coeficientul de flambaj   depinde de material și este specificat în 

tabele specializate. 

 

Exemplul 6.4 

Se consideră un stâlp realizat din din OL37, încastrat la ambele capete, 
de înîlțime 4l m  și de secțiune dreptunghilară, cu laturile a  și 2a , unde 

90a mm  (figura 6.12). Tensiunea admisibilă este 140a MPa  . 

Se cere să se determine forța capabilă prin metoda coeficientului de 
flambaj  . 

 
P 

l 

a 

2
a

 

z 

y 

O 

 
Figura 6.12 

 

Rezolvare: 

Forța de flambaj poate fi calculate cu relația: aP A . 

Aria secțiunii stâlpului este:  2 2 22 2 90 16200A a mm        

Momentul de inerție axial minim este:
3 4

6 4
min

2
10,935 10

12 6
y

a a a
I I mm


      

Raza de inerție minimă este: 
6

min
min 3

10,935 10
25,98

16,2 10

I
i mm

A


  


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Coeficientul de zvelteță are valoarea: 
2000

76,982
25,92

   

În tabelele de specialitate există, pentru OL37 valori pentru coeficientul 
de flambaj   corespunzătoare lui 76   și 77  . Aceste valori sunt: 

0,713  , pentru 76   și 0,709  , pentru 77  . 

Pentru determinarea valorii coeficientului de flambaj   corspunzător 

coeficientului de zvelteță 76,982   se aplică „„o regulă de trei simplă” astfel:  

 pentru o creștere a coeficientului de zvelteță de o unitate (77-76) 
variația coeficientului de flambaj   este de -0,004 (0,713-0,709); 

 ca urmare, la o creștere a coeficientului de avteță de 0,982 (76-76,982) 
creșterea variația coeficientului de flambaj este 

0,004 0,982
0,003928

1


 
   ; 

 valoarea coeficientului de flambaj este   corespunzătoare 

coeficientului de zvelteță 76,982   va fi: 

0,713 0,003928 0,709072    . 

Forța de flambaj va fi:   0,709072 140 16.200 1.608.175,296 ( )P N    . 

 

  

 

 

 

 

 

 



REZISTENȚA MATERIALELOR SOLICITĂRI DINAMICE 

 

194 

SOLICITĂRI 
DINAMICE 7 
 

 

 

 

 

7.1. Introducere 

 

Solicitările statice se caracterizează prin aplicarea unei forțe constantă 
în timp, valoarea acesteia crescând de la valoarea nulă la cea maximă într-un 
interval suficient de mare în timp. 

În cazul solicitărilor dinamice, valoarea lor este dependentă de timp 
șiind însoțite de apariția unor accelerații. În funcție de modul de variației al 
acestor forțe și de accelerațiile care le însoțesc, aceste solicitări se împart în 
trei grupe: 

a) Solicitări produse de forțele de inerției acestea având acceleraţii 
constante sau cu o variaţie lentă; 

b) Solicitări produse de șocuri care sunt însoțite de variații bruște ale 
accelerațiilor (solicitări dinamice produse de ciocniri); 

c) Solicitări produse de forțe variabile, periodic, în timp. Astfel de 
solicitări sunt vibraţiile sistemelor elastice şi calculul de rezistenţă 
la oboseală al organelor de maşini supuse solicitărilor variabile 
periodic în timp. 

 

7.2. Solicitări produse de forţe de inerţie 

 

Analiza acestor sisteme se realizează pe baza principiului lui 
d’Alembert. Pe baza acestui principiu sunt considerate, pe lângă forțele date şi 
cele existente în legături și forţele de inerţie, în felul acesta problemele de 
dinamică se transformă în probleme de statică. 
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În cazul principiului lui d’Alembert sunt utilizate modele de calcul ale staticii 
fiind folosite ecuații de echilibru. Metoda poartă denumirea de metodă cineto-statică, 

având o mare răspândire în inginerie. Metoda se aplică fiecărui element de masă 
dm  pentru care se cunoaște accelerația „a ” cu care se deplasează. Pe baza 

celor cunoscute de la Mecanică, forța elementară de inerție idF  a elementului 

de masă dm este: 

 

idF a dm  .    (7.1) 

 

Corpurile pot efectua două tipuri de mișcare: 

a) de translație - caz în care apare o forță de inerție rezultantă; 

b) de rotație cu axă fixă – caz în care momente de inerție rezultant.  

În cazul mișcării de translație fiecare punct al corpului are aceeași 
accelerație și prin reducerea în centrul maselor se obține o rezultantă a 
forţelor de inerţie elementare (7.1), care este egală cu produsul dintre masa şi 
acceleraţia solidului în mişcare: 

 

iF ma .     (7.2) 

 

În cazul mișcării de rotație cu axă fixă cu o viteză unghiulară constantă 
 , asupra elementului de masă dm , aflat la o distanță r  de centrul de rotație, 
acționează  două forțe, corespunzătoare direcțiilor normală și tangențială: 

a) de-a lungul direcției normale - o forță elementară de inerție 
centrifugală, egală cu: 

 

2
cdF r dm     (7.3) 

unde:     2
rr a      (7.4) 

 

reprezintă accelerația radială; 

b) de-a lungul direcției tangențiale – o forță elementară de inerție 
tangențială, egală cu: 

 

tdF r dm     (7.5) 
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unde:     2
tr a  ,    (7.6) 

reprezintă accelerația tangențială. 

 Ca urmare, forța inerțială elementară va fi egală cu: 

 2 2 4 2
i c tdF dF dF r dm     .  (7.7) 

 În cazul în care, centrul maselor este situat pe axa de rotație, forțele de 
inerție elementare se reduc la un cuplu de inerție: 

iC J     (7.8) 

unde J  reprezintă momentul de inerție al corpului solid față de axa de rotație. 

 

7.2.1. Calculul cablului de ascensor 

 

În figura 7.1 este prezentat un sistem format dintr-un corp de greutate 
Q  (grautatea ascensorului), care este legat cu un cablu de greutate neglijabilă.  

Când ascensorul pornește sistemul (ascensorul) are o accelerație a . 
Forța axială maximă se produce în momentul pornirii ascensorului în sus, 
moment în care, apare o forță de inerție iF , care se opune deplasării masei Q : 

i

Q
F ma a

g
       (7.9) 

 

N a 

a 

Q 

Fi 
 

 

Figura 7.1 
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Din condiţia de echilibru a forţelor care acţionează asupra ascensorului, 
rezultă forţa axială din cablu: 

 

1i

a
N Q F Q Q

g


 
     

 
  (7.10) 

 

unde s-a notat cu   expresia coeficientului dinamic: 

 

1
a

g
   .    (7.11) 

 

 Forței axiale dată de (7.10) îi corespunde o tensiune   egală cu: 

 

st

N Q

A A
     ,   (7.12) 

 

în care, prin st  este tensiunea din cablu care se produce în cablu atunci când 

greutatea Q  se află în stare de repaus (forța Q  acționează static). 

 Condiția de rezistență impune ca tensiunea dată de (7.12) să fie mai 
mică ca cea admisibilă: 

 

st a

N Q

A A
         (7.13) 

 

7.2.2. Calculul volantului 

 

Volanţii, ca și elemente mecanice, au fost folosiți de la începuturile 
dezvoltării sistemelor mecanice servind la uniformizarea mişcării maşinilor 
având posibilitatea de a înmagazina o mare cantitate de energie cinetică.  

Volanţii au forma de roată cu obadă, spiţe şi butuc sau forma de disc 
plin, îngroşat în zona de fixare pe arbore şi în zona periferică.  
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Figura 7.2 

 

Volanţii execută o mişcare de rotaţie cu axă fixă, în principal cu o viteză 
unghiulară   constantă fiind dezvoltate forţe centrifuge, care ținând cont de 
direcția în care acestea acționează, determină apariția unor tensiuni normale 
 . 

Calculul tensiunilor normale poate fi făcut astfel:  

a) Prin calculul aproximativ, la care, în cazul existenței spițelor    
(figura 7.2), acestea sunt neglijate obada fiind considerată ca un 
inel subţire aflat în mișcare de rotație (figura 7.3,a); 

b) Prin calculul volantului considerat a fi disc în mișcare de rotație; 

c) Prin calculul volantului cu considerarea spițelor astfel încât 
volantul devine sistem static nedeterminat. 
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a) 

 

b) 

 

Figura 7.3 

 

În cazul în care se consideră calculul aproximativ se admit următoarele 
ipoteze simplificatoare: 

a) masa spițelor este neglijabilă comparativ cu masa obadei; 

b) grosimea obadei cste mică faţă de diametrul mediu 2R  al 
volantului. 

În calcul se consideră că volantul se rotește cu o turație constantă 

 minn rot  căreia îi corespunde o viteză unghiulară: 

 

 
30

n
rad s


     (7.14) 

 

 Forța centrifugală acționează în secțiunile transversale ca o forță de 
tracțiune care generează o tensiune normală.  

Pentru calcul, se consideră un volant cu greutatea specifică   a 

materialului din care este confecționat din care se izolează un element foarte 
mic, delimitat de un unghi elementar d  (figura 7.3,b) în care se dezvoltă o 
forță centrifugală egală cu: 
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2 2
i ndF a dm R A d

g


     ,    (7.15) 

 

în care A  este aria secțiunii transversale, iar g  este accelerația gravitațională, 

na  este accelerația normală, 2
na R . 

 Izolând elementul de obadă de lungime ds  (figura 7.3,b), în secțiunile 
axiale se dezvoltă forțe axiale N , care mențin echilibrul elementului. Pe baza 
ecuației de echilibru, scrisă pentru proiecțiile forțelor pe direcie bidsectoarei 
unghiului d , rezultă: 

2 sin 0
2

i

d
dF N


   

sau:   

     2 sin
2

i

d
dF N N d


  .  (7.16)  

 

Considerând relațiile (7.15) și (7.16) se obține: 

 

2 2 2idF
N R A Av

d g g

 



   ,   (7.17) 

 

unde v  este viteza medie a obadei ( v R ). 

 Forței axiale N  definită de relația (7.17) îi corespunde o tensiune 
normală  : 

 

2N
v

A g


   .   (7.18) 

 

Pe baza relației (7.18) se poate concluziona faptul că tensiunea normală 
dezvoltată nu depinde de aria secțiunii transversale A  și ca urmare 
dimensionarea nu poate fi făcută din condiții de rezistență. 

Ceea ce se poate determina ca și parametru funcțional al volantului este 
viteza periferică v  a acestuia ținând cont de materialul din care este 
confecționat acesta. Din (7.18) viteza periferică maximă este: 
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a g
v




 .    (7.19) 

 

 Deformarea volantului poate fi determinată considerând relația de 
alungire: 

 

2

2
v R

l l l
E g E

 
         (7.20) 

 

în care prin l  s-a considerat lungimea conturului circular al volantului 
2l R . 

 Pe baza relației (7.20) poate fi calculată modificarea R  a razei: 

 

2

2

l R v R
R

E g E

 




    .   (7.21) 

 

7.2.3. Calculul barei în rotație 

 

 Se consideră bara dreaptă din figura 7.4, care are o mișcare de rotație 
cu o viteză unghiulară   constantă în jurul unui punct. Bara are secțiune 
transversală variabilă ( )A x , este realizată dintr-un material care are greutatea 

specifică   și o forță orientată în lungul axei Ox  egală cu Q . 

Urmare a mișcării de rotație asupra barei acționează forțe centrifuge 
care solicită bara la întindere. Considerând bara ca sistem continuu, forța de 
inerție asociată unui element infinitezimal de lungime dx  și de masă dm  este: 

 

2 ( )idF a dm x A x dx
g


      (7.22) 

Forța axială la o distanță x  este egală cu: 

 

2 2( )
l r

x

Q
N x R Ax dx

g g


 



   ,  (7.23) 
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a) 

 

b) 

 

Figura 7.4 

 

În cazul în care, bara este de secțiune constantă ( .A const ), secțiunea 

periculoasă se află situată la îmbinarea barei cu bucșa cilindrică de rază r , 
forța axială fiind: 

 

 
2

22 2 2

2

l r

r

Q A
N R A x dx QR l r r

g g g

  
 


          

 , (7.24) 

 

care generează o tensiune normală maximă, egală cu: 

 

 
2

2 2
max

2

N A
QR l r r

A gA

 


         
. (7.25) 

 

 Analizând cazul barei de egală rezistență (pala elicei de la motorul 
avionului), din condiția de echilibru dinamic, scrisă pentru un element de bară, 
se obține: 

     ( ) ( ) ( ) 0a i aA x dF A x dA X         (7.26) 

 

de unde, ținând cont și de (7.22), rezultă: 

 

2( )

( ) a

dA x

A x g





     (7.27) 
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din care se obține: 

     
2

2ln ( )
2 a

A x x C
g




   .  (7.28) 

 

 Pentru determinarea constantei C  se consideră x r  din care rezultă: 

 

2

0ln
2 a

C A
g

 


  ,   (7.29) 

 

unde 0A  este valoarea ariei secțiunii transversale pentru x r . 

 Considerând  relația (7.29) și combinând-o cu (7.28), după un calcul 
simplu rezultă: 

 

 
2

2 2

2

0( ) a

x r
g

A x A e





 
  

   .  (7.30) 

 

Din relația (7.25) se poate calcula viteza unghiulară maximă   astfel 
încât să nu fie depășită tensiunea normală maximă. Punând condiția de 
rezistență max a   , în absența forței concentrate Q  se obține: 

 

2 2

max
2

a

R

g

 
   , 

 

din rezultă viteza unghiulară maximă max :  

 

max

21 ag

R





 .   (7.31) 

 Din relația (7.31) se poate constata că viteza unghiulară maximă max  

depinde de proprietățile materialului barei, de lungimea ei dar nu depinde de 
aria secțiunii transversale.  
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7.2.4. Calculul mecanismului bielă-manivelă 

 

 Mecanismul bielă-manivelă transformă mișcarea de rotație în mișcare 
de translație rectilinie sau invers, mișcarea de translație rectilinie în mișcare 
de rotație, una din aplicațiile de bază fiind cea a pistoanelor din motoarele cu 
ardere internă, caz în care mișcarea de translație liniară a pistonului este 
transferată către bielă fiind convertită în mișcare circulară a arborelui cotit. 
Cele două componente de bază sunt (figura 7.5,a): 

a) manivela – care execută o mișcare de rotație cu o viteză unghiulară 
 , de dorit constantă; 

b) biela – execută o mișcare plană.  

 

a) 

 

b) 

 

Figura 7.5 

 

Pentru determinarea solicitărilor dinamice se consideră punctul K  a 
cărui accelerație se poate calcula cu relația: 
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2
Ka R .    (7.32) 

 

Accelerația unei secțiuni oarecare, situată la distanța z  față de punctul 
C  poate fi determinată cu relația: 

 

2 sinz

z
a R

l
  . 

 

care are valoarea maximă pentru unghiul 90  : 

 

2
C

z
a R

l
     (7.33) 

 

Ca urmare, forța elementară de inerție a elementului de bielă de 
lungime dz  și masă elementară dm  este: 

 

2
i z

z
dF a dm R Adz

l g


  .   (7.34) 

 

 Pe baza relației (7.34) se poate calcula forța de inerție pe unitatea de 
lungime dz  (caracter de forță distribuită): 

 

2i
z

dF z
f R A

dz g l


  .  (7.35) 

 

Analizând relația (7.35), se poate observa că, în cazul în care secțiunea 
bielei este constantă ( .A const ), forța de inerție pe unitatea de lungime xf  

are o distribuție liniară de-a lungul lungimii. În acest caz, din (7.35), pentru 
z l  se obține valoarea maximă: 

 

2
maxf R A

g


 .   (7.36) 
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Momentul maxim se produce pentru distanța 3z l  rezultând: 

2 2
max

max

0,064

9 3

f l R lV
M

g

 
  ,  (7.37) 

unde prin V  s-a notat volumul bielei. 

 Pornind de la relația (7.37) tensiunea maximă este: 

 

2
max

max

0,064

z z

M R l V

W g W

 


    
 


  (7.38) 

 

Așa cum rezultă din relația (7.38) tensiunea este direct proporțională 

cu 2  ceea ce face ca, la turații foarte mari tensiunea să fie mare. Având în 
vedere că biela este solicitată și în direcție axială se face un calcul suplimentar 
la flambaj. 

 

7.3. Solicitări produse prin aplicarea bruscă a 
sarcinilor 

 

 În urma lovirii corpurilor solide, liniar-elastice, cu diferite obiecte se 
constată apariția a două stări, dinamice: 

a) o stare locală, ăn jurul punctului de lovire; 

b) o stare generală de tensiune. 

Aplicarea bruscă a sarcinilor este definită și sub denumirea de 
încărcare cu șoc, timpul de aplicare fiind foarte scurt. Ca urmare, problemele 
în care se tratează starea de tensiuni și deformații a structurilor la care 
încărcarea este realizată prin șoc nu pot fi tratate prin metoda cineto-statică.  

Studiul acestor probleme se realizează pe baza legii conservării 
energiei. Dacă un corp de masă m  se află în mișcare de translație cu o viteză 
v , energia cinetică este egală cu: 

 

2

2
c

mv
E  ,    (7.39) 

iar dacă este într-o mișcare de rotație în jurul unei axe fixe, cu o viteză 
unghiulară    și are un moment de inerție J , energia cinetică este: 
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2

2
c

J
E


 .    (7.40) 

 

 În cazul în care același corp cade de la o înălțime oarecare h , energia 
potențială pe care o are în momentul căderii este: 

 

pE mgh Qh  ,   (7.41) 

 

unde Q mg  reprezintă greutatea corpului, iar g  este accelerația 

gravitațională. 

 Ținând cont de faptul că sistemele se consideră conservative, în lipsa 
frecării sau în cazul existenței unei frecări cu un coeficient foarte mic, se poate 
admite că energia totală tE  rămâne constantă: 

 

t c pE E E  .    (7.42) 

 

 În cazul unui corp care cade de la înălțimea H  energia potențială dată 
de relația (7.41) urmare a conservării energiei, se transformă integral în 
energie cinetică: 

 

cE L Qh  .    (7.43) 

 

 Pe baza relațiilor de calcul de mai sus, rezultă că un corp solid rezistă 
cu atât mai bine la șoc cu cât el este mai deformabil și ca urmare, la alegerea 
barelor supuse la șoc se aleg barele cu rigiditate mică. 

 

7.3.1. Solicitări de întindere cu șoc 

 

 Se consideră o bară de lungime l  și modul de rigiditate EA . O greutate 
Q  este ghidată de-a lungul barei și cade perpendicular pe un platan montat la 

capătul barei. Urmare a ciocnirii rezultă o solicitare de întindere a barei, 
definită a fi întindere cu șoc (figura 7.6).  
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Figura 7.6 

                            

Considerând sistemul ca fiind conservativ rezultă că energia potențială 
pe care greutatea Q , la o înălțime oarecare H , se transformă integral în 

energie cinetică. Astfel se poate scrie relația: 

 

c pE E Q H   .   (7.44) 

 

 Considerând forța axială care apare ca fiind aproximativ constantă de-a 
lungul barei, energia de deformație a barei se poate calcula cu relația: 

 

2

2

N l
U

EA


             (7.45) 

 

Egalând energia dată de relația (7.44) cu energia potențială de 
deformație exprimată prin (7.45): 
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2

2

N l
Q H

EA


   

 

se obține:    
2EAQ

N
l

     (7.46) 

 

Tensiunea rezultantă este: 

 

2 2
st

N QEH EH

A A l l
   


,  (7.47) 

 

unde st Q A  . 

Ținând cont de relațiile cunoscute din Fizică: volumul barei - V A l   și 

viteza în momentul ciocnirii - 2v gh , relația (7.47) poate fi rescrisă și sub 

formele: 

 

22 2

2

QEH E Qv

V V g
     (7.48) 

 

Pornind de la relația (7.46) lungirea produsă în urma solicitării cu șoc 
este egală cu: 

 

2
2 st

N l Q H l
l H l

E A E A


    


.  (7.49) 

 

Din analiza relațiilor de mai sus se pot trage următoarele concluzii: 

 bara rezistă la șoc cu atât mai mult cu cât volumul ei este mai mare 
(7.48); 

 tensiunea normală   indusă în bară în urma șocului este cu atât 
mai mică cu cât bara este mai lungă (7.47); 

 din concluzia de mai sus rezultă că pentru preluarea șocului este 
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bine să fie folosite șuruburi cât mai lungi (buloane elastice); 

 tensiunea normală   apărută urmare a șocului crește odată cu 
creșterea modulului de elasticitate longitudinal E  (7.47). 

 

7.3.2. Solicitări de compresiune cu șoc 

 

Se consideră o bară de secțiune variabilă, în formă de trunchi de con, 

având ariile bazelor 1A  și 2A  și înălțimea h  (figura 7.7). De la o înălțime H , 

cade pe suprafața superioară ( 2A ), o greutate Q .  Din condiția de sistem 

conservativ, rezultă că energia cinetică, în momentul șocului, este: 

 

                   c p eE E L QH   .            (7.50) 

 

 

x 
d

x 

a
 

O 

h
 

H
 

Q 

A1 

A2 

A 

 

 

Figura 7.7 

 

Energia acumulată în bara de secțiune variabilă se calculează cu 
expresia: 
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2 2

0 0

1

2 ( ) 2 ( )

h h
N N

U dx dx
EA x E A x

     (7.51) 

 

 Considerând diametrele secțiunilor 1d , pentru aria 1A , 2d , pentru aria 

2A  și xd , pentru aria xA , pe baza asemănării pot fi scrise rapoartele: 

 

1

1

2

;
( )

.

da

x d x

da

a h d






 
 

    (7.52) 

 

Pe baza relațiilor de asemănare (7.52) pot fi scrise rapoartele: 

 

 
1 2

22 2

( )A AA x

a x a h
 


,   (7.53) 

 

din care rezultă: 

     
 

 

2

1 22

2

22

;

( ) .

a
A A

a h

x
A x A

a h






 
 

.  (7.54) 

 

Din egalarea energiiei de deformație cu energia cinetică rezultă 
expresia forței axiale dezvoltată, în bară, în momentul ciocnirii: 

 

 
22EQHA a

N
a h h




   (7.55) 

 

Pe baza relației (7.55) se poate calcula tensiunea normală maximă 

max , apărută în secțiunea cea mai mică, de arie 1A : 
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2 3

max

1 2 2

2
1

N N a h QHE h

A A a A h a


   
      

   
 (7.56) 

 

Pe baza relației (7.56) pot fi făcute umătoarele observații: 

 în cazul în care bara este de secțiune constantă: 1 2A A A   cota 

a    rezultând relația (7.47) în care h l ; 

 în cazul în care, bara are un vârf ascuțit ( este așezată pe vîrful 
din O ), atunci 0a   și 1 0A   ceea ce conduce la o valoare foarte 

mare a tensiunii normale în vârful din O  ( max   ). Acest fapt 

face ca sculele ascuțite la vârf  să fie utile petru operațiile de 
tăiere, perforare etc. 

 

7.3.3. Solicitări de încovoiere cu șoc 

 

Se consideră o grindă cu modulul de rigiditate constant ( .zEI const ) și 

lungime l  peste care cade un corp de greutate Q , de la înălțimea H           

(figura 7.8). Corpul de greutate Q  lovește grinda întrun punct oarecare. 

 

 

Figura 7.8 

 



REZISTENȚA MATERIALELOR SOLICITĂRI DINAMICE 

 

213 

Considerând grinda de masă mică, în calcule nu vor fi luate în considerare 
forțele de inerție. Considerând sistemul conservativ rezultă că energia 
potențială se transformă, în momentul impactului, în energie cinetică. 

 

c p eE E L QH   .   (7.57) 

 

În urma impactului se dezvoltă reacțiunile A

Qb
Y

l
  și B

Qa
Y

l
 .  

Pentru cele două intervale A C  și C B  momentele încovoietoare, 

conform notațiilor din figura 7.8, sunt:  

 

iAC

Qb
M x

l
  și ( )iCB

Qa
M b x

l
   

 

Ca urmare, energia de deformație este: 

 

2 2 2 2 2
2 2 2

2 2

0 0

1 1
( )

2 2 2

C B a b

i
iAC iCB

z z zA C

M Q b Q a
U dx M dx M dx x dx b x dx

EI EI EI l l

   
        

   
    

 

 După realizarea calculelor și rearanjarea termenilor se obține: 

 

2 2 2 2 2 2

2
( )

6 6z z

Q a b Q a b
U a b

EI l EI l
   . 

 

Ținând cont de valoarea momentului maxim (figura 7.8) ,maxi

Qab
M

l
 , 

relația energiei de deformare se poate rescrie sub forma: 

 

2 2 2
2
,max

6 6
i

z z

Q a b l
U M

EI l EI
  .   (7.58) 
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 Din egalarea relațiilor (7.57) și (7.58) se obține: 

 

2
,max

6
i

z

l
M QH

EI
  

 

de unde rezultă: 

2
,max

6 z
i

QHEI
M

l
  

din care se obține: 

    ,max

6 z
i

QHEI
M

l
 .    (7.59) 

 

 Pe baza relației (7.59) poate fi calculată tensiunea maxim la încovoiere: 

 

,max
max max

61 6i z

z z z

M QHEI QHE
y

W W l W l
    . (7.60) 

Pe baza celor de mai sus pot fi făcute următoarele observații: 

 Momentul încovoietor maxim, în cazul solicitării de încovoiere cu 
șoc, nu depinde de locul în care cade corpul (cotele a  și b ), relația 
(7.59); 

 Tensiunea maximă, în cazul solicitării de încovoiere cu șoc, este cu 
atât mai mare cu cât lungimea este mai mare și practic cu cât 
volumul este mai mare, relația (7.60). Acesta este și motivul pentru 
care piesele solicitate la șoc trebuie să fie suficient de elastice 
pentru ca energia din momentul șocului să fie absorbită pe 
deplasări mari. 

 

7.3.4. Solicitări de torsiune cu șoc 

 

Se consideră un arbore de diametru constant d  și lungime între 
lagărele de rezemare l . La unul din capete este montat un volant de diametru 
D  și greutate Q . Arborele este antrenat de un moment de torsiune tM , acesta 

rotindu-se cu o viteză unghiulară constatntă  . 
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l 

d
 

Mt 

J 

A B 

 

Figura 7.9 

 

La un moment dat, volantul este oprit brusc. În momentul imobilizrii, 
energia cinetică a volantului se transformă în energie de deformație, aceasta 
fiind preluată de porțiunea solicitată la torsiune, porțiunea A B . Energia 

cinetică este: 

 

21

2
cE J     (7.61) 

 

unde J  este momentul de inerție mecanic, calculat cu relația: 

 

2 2
2

2 2

Q D Q D
J mR

g g

 
   

 
.  (7.62) 

 

Ca urmare, energia cinetică este egală cu:  

 

2
2

8
c

Q D
E

g
 .    (7.62) 

 

Energia de deformație a arborelui este dată de relația: 

 

2 2

0
2 2

l

t t

p p

M M l
U dx

GI GI
     (7.64) 
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 Egalând relațiile (7.63) și (7.64) se obține: 

 
22

2

8 2
t

p

M lQ D

g GI
   

 

din care rezultă expresia momentului de torsiune: 

 

2

2
2

8

p p

t

GI Q D G I J
M

gl l
   .  (7.65) 

 

Ținând cont de relația de calcul a tensiunii tangențiale la solicitarea de 
torsiue, se obține: 

 

max

2 2pt

p p

G I JM G J G J

W W l Al V


      , (7.66) 

unde 
2

4

d
A


  este aria secțiunii transversale a arborelui, iar V este volumul 

arborelui. 

 Pe baza relației (7.65) se poate concluziona că tensiunea maximă este 
invers proporțională cu volumul V  al arborelui. Ca urmare, pentru o secțiune 
constantă, este preferabil un arbore cu lungime cât mai mare. 

 

7.4. Calculul la șoc cu ajutorul multiplicatorului 
dinamic (de impact) 

 

Impactul are loc atunci când un obiect lovește altul, astfel încât se 
dezvoltă forțe mari între obiectele într-o perioadă foarte scurtă de timp. 

Se consideră un corp de greautate Q  care cade, de la o înălțime H ,  pe 

un element elastic de constantă elastică  statică k  (figura 7.10). Constanta 
statică elastică a unui arc este definită cu relația generală: 
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Forta
k

Deformatie
 . 

 

Considerând solicitarea în domeniul elastic și neglijând masa arcului, în 
urma impactului, arcul se deformează cu o cantitate max . 

Energia de potențială totală a corpului de greutate Q , ținând cont de 

deformarea maximă a arcului max , este egală cu: 

 

 ,maxdU Q H     (7.67) 

 

unde prin ,maxd  s-a considerat deformarea (săgeata) maximă dinamică. 

 

 

H
 


m

ax
 

Q 

 

 

Figura 7.12 

 

Lucrul mecanic efectuat de arc este egal cu: 

 

max

2
eF

L


 ,    (7.68) 

 

unde eF  este forța elastică: 

,maxe dF k  .    (7.69) 
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Înlocuind relația (7.69) în relația (7.68) rezultă: 

 

2
,max

2
dk

L


 .    (7.70) 

 

Presupunând că nu au loc pierderi de energie în timpul impactului, din 
cauza căldurii, a sunetului sau a deformărilor plastice locale, se poate 
considera că energia potențală a corpului de greutate Q , dată de relația (7.67) 

este egală cu lucrul mecanic efectuat de arc, relația (7.70): 

 

 
2

,max
,max

2
d

d

k
Q H


  .  (7.71) 

 

Relația (7.71) este, în fapt, o ecuație de gradul II: 

 

2
,max ,max

2 2
0d d

Q QH

k k
     .  (7.72) 

 

Soluția de valoare maximă a ecuației (7.72) este: 

 

2

,max 2d

Q Q Q
H

k k k

   
      

   
.  (7.73) 

 

Dacă asupra arcului se aplică static greutatea Q , ținând cont de formula 

generală de calcul a rigidității statice a unui element elastic, rezultă că 
deformația statică, st , poate fi exprimată prin relația: 

 

st

Q

k
  .    (7.74) 

 

 Pe baza relației (7.74), relația (7.73) devine: 
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2
max 2st st st H       .   (7.75) 

 

sau:    max 1 1 2st

st

H 
     

  

  (7.76) 

 

Din relația (7.76) rezultă că, în cazul solicitării dinamice deformarea 
este egală cu deformarea statică amplificată cu un factor. Acest factor poartă 
numele de multiplicator dinamic  , acesta fiind egal cu: 

 

1 1 2
st

H
   


.   (7.77) 

 În cazul în care, lucrul mecanic exterior este foarte mare comparativ cu 
energia de deformație, expresia multiplicatorului dinamic devine: 

 

1 2
st

H
  


.   (7.78) 

 

Multiplicatorul dinamic   exprimă raportul dintre mărimile solicitării 

dinamice și cele corespunzătoare solicitărilor statice. Ca urmare se poate scrie: 

 

.......d d

st st

P

Q







   


  (7.79) 

 

 Pe baza relației (7.77) se poate concluziona că, în cazul aplicării bruște 

a unei greutăți oarecare  0H   săgeata dinamică este dublul săgeții statice: 

 

,max 2d st   .    (7.80) 

 

În mod similar se poate considera situația în care un corp de greutate 
Q  se deplasează pe un plan orizontal și lovește același arc, montat orizontal. În 
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acest caz, energia pe care o are corpul în momentul impactului este energia 
cinetică: 

2 2

2 2
c

mv Qv
E

g
  .    (7.81) 

 

Egalând relația (7.81) cu relația (7.70), rezultă: 

 

22
,max

2 2
dkQv

g


 , 

 

de unde rezultă: 

22

,max
st

d

vQv

gk g


   .   (7.82) 

 

 Pe baza celor de mai sus, se pot concluziona: 

 impactul are loc atunci când o forță mare este dezvoltată între două 
obiecte care se lovesc între ele într-o perioadă scurtă de timp; 

 efectele impactului pot fi analizate considerând corpul de impact 
rigid, iar materialul corpului lovit elastic liniar, 

 în timpul coliziunii nu sunt pierderi de energie, corpurile rămânînd 
în contact în timpul coliziunii, iar inerția corpului elastic este 
neglijată; 

 mărimile dinamice pot fi determinate prin înmulțirea valorilor 
statce cu multiplicatorul  factor de impact. 
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Valorile caracteristicilor E , G ,   și   
 

Nr.crt. Material E  

 510 MPa  

G  

 410 MPa  

    
6 110 C      

1 Alamă 0,90 ÷ 1,30 3,5 ÷ 4,9 0,32 ÷ 0,42 18 ÷ 20 
2 Aluminiu 0,69 ÷ 0,70 2,6 0,32 ÷ 0,33 23 ÷ 24 
3 Aliaje de Al cu 

Si 
0,76* 0,30* 0,27* 18* 

4 Aliaje de Al cu 
Mg 

0,43 ÷ 0,45 1,6 ÷ 1,8 0,35 23 ÷ 26 

5 Bronz 0,90 ÷ 1,20 0,43* 0,31 ÷ 0,35 14 ÷ 15 
6 Cupru laminat 1,10 ÷ 1,30 4,9* 0,31 ÷ 0,34 16 ÷ 17 
7 Duraluminiu 0,69 0, 75 2,7 ÷ 2,8 0,32 ÷ 0,33 23 ÷ 24 
8 Fontă cenușie 

albă 
0,75 ÷ 1,60* 3,2 ÷ 5,2 0,20 ÷ 0,27 10 ÷ 12 

9 Fontă perlitică 
maleabilă 

1,60 ÷ 1,85* 6,8 ÷ 8,0* - 10 ÷ 13 

10 Oțel carbon 2,0 ÷ 2,15 7,8 ÷ 8,5 0,26 ÷ 0,29 11 ÷ 13 
11 Oțel aliat 1,9 ÷ 2,20 8,1 ÷ 8,3 0,25 ÷ 0,30 11 ÷ 13 
12 Oțel inoxidabil 1,9 ÷ 2,00 6,6 ÷ 7,5 0,25 ÷ 0,32 15 ÷ 18 
13 Plumb 0,14 ÷ 0,17 0,07* 0,4 ÷ 0,45 29* 
14 Polistiren 0,03 ÷ 0,05 - - 130 
15 Sticlă 0,45 ÷ 1,00 2,1 ÷ 2,3 0,24 ÷ 0,27 2 ÷ 8 
16 Textolit 0,06 ÷ 0,10 2,2 - - 

* - valori aproximative 
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Momente de inerție și module de rezistență 
 

Nr. 
crt. 

Forma secţiunii Relaţii de calcul 
Aria 

secţiunii 
Momente de inerţie axiale zI  şi yI  

Momente de inerţie centrifugale zyI  

Momente de inerţie polare pI  

Module de 
rezistenţă 

zW , yW  pW  

Raze de inerţie 

 
 

1. 

 

 
2hA   

4

12
z y

h
I I  ; 

3

4h
I zy   

 
 

3

6
z y

h
W W   

12
y z

h
i i   

0,289y zi i h   

Elipsa de inerţie este un 
cerc 

 
 

2. 

 

 
 

2 2A H h 

 

4 4

12
z y

H h
I I


   

 
Toate axele centrale sunt principale 

 
4 4

6
z y

H h
W W

H


   12

22 hH
ii zy


  

22289,0 hHii zy   

Elipsa de inerţie este un 
cerc 

 
 

3. 

 

 
 

22 ahA 

 

 
 

4 4

12
z y

h a
I I


   

 

 
 

4 4

6
z y

h a
W W

h


   

2 2

12
y z

h a
i i


   

2 20,289y zi i h a    

Elipsa de inerţie este un 
cerc 
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Nr. 
crt. 

Forma secţiunii Relaţii de calcul 
Aria 

secţiunii 
Momente de inerţie axiale zI  şi yI  

Momente de inerţie centrifugale zyI  

Momente de inerţie polare pI  

Module de rezistenţă 

zW , yW  pW  
Raze de inerţie 

 
 

4. 

 

 
 

2A a  

4 2 4

12 12 48
z y

a a A h
I I     

 
Toate axele centrale sunt principale 

3 32

12 24
z y

a h
W W    

3

3

0,118

0,042

z yW W a

h

  


 

 

0,289y zi i a   

 
Elipsa de inerţie este un 

cerc 

 
 

5. 

 

 
 

A bh  

 
3

12
z

bh
I 

 

3

12
y

hb
I   

2

6
y

hb
W  ;  

2

6
z

bh
W   

 

0,289yi h  

0,289zi b  

 
 

6. 

 

 
 

A BH bh 

 

12

33 hbHB
I y




  

12

33 bhBH
I z




 

3 3

6
y

HB hb
W

B




 
3 3

6
z

BH bh
W

H


  

 

3 3

12
y

HB hb
i

BH bh





 

 

3 3

12
y

BH bh
i

BH bh





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Nr. 
crt. 

Forma secţiunii Relaţii de calcul 
Aria 

secţiunii 
Momente de inerţie axiale zI  şi yI  

Momente de inerţie centrifugale zyI  

Momente de inerţie polare pI  

Module de 
rezistenţă 

zW , yW  pW  

Raze de inerţie 

 
 

7. 

 

 

 A b H h    
3

12
y

b
I H h 

 

 3 3

12
z

b
I H h 

 

 
2

6
y

b
W H h 

 

 2 2

6
z

b
W H h

H
 

 

0,289yi b  

2 2

12
z

H Hh h
i

 
  

2 20,289zi H Hh h    

 
 
 
 

8. 

 
 

 

 
 
 

2

4

d
A bh


   

 
3 41

4 3 16
y

hb d
I

 
  

   

 
3 41

4 3 16
z

bh d
I

 
  

   

 
3 41

2 3 16
y

hb d
W

b

 
   

   

 
3 41

2 3 16
z

bh d
W

h

 
   

   

4

3

2

1 0,59

0,289

1 0,785
z

d

hbi h
d

hb





  

4

3

2

1 0,59

0,289

1 0,785
y

d

hbi b
d

hb







 

 
 

9. 

 

 
 

( )

A ah

b H h

 

 
 

)(
1212

33

hH
bha

I y   

 

 33
3

1212
hH

bah
I z 

 

 hH
b

b

ha
Wy 

66

23

 
 

 
3

3 3

6 6
z

ah b
W H h

H H
  

 

 )(12

)(33

hHbah

hHbha
iy




  

 )(12

)( 333

hHbah

hHbah
iz






 

 



REZISTENȚA MATERIALELOR ANEXA 2 

 

228 
 

Nr. 
crt. 

Forma secţiunii Relaţii de calcul 
Aria secţiunii Momente de inerţie axiale zI  şi yI  

Momente de inerţie centrifugale zyI  

Momente de inerţie polare pI  

Module de rezistenţă 

zW , yW  pW  
Raze de inerţie 

 
 
 

10. 

 

 
 
 

)( bBhBHA 

 

 

 3 3

12
z

hB H h b
I

 
  

 3 3

12
z

bH B b h
I

 
  

 

 3 3

6
z

hB H h b
W

B

 
  

 3 3

6
z

bH B b h
W

H

 
  

 

y
y

I
i

A
  

z
z

I
i

A
  

 
 
 
 
 

11. 

 

 

 
 

2

2

d
A bh


   

 
 

3 4 2

3 2
1 1,18 1 16

12
z

bh d a
I

bh d

  
     

   

 

 
3 4

3
1 1,18

12
y

hb d
I

hb

 
  

 
 

 
2

4 2

3 2

6

1 1,18 1 16

z

bh
W

d a

bh d

 

  
     
   

 
 

2 4

3
1 1,18

6
y

hb d
W

hb

 
   

 

 

4

3

2

1 1,18

0,289

1 1,57
y

d

hbi b
d

hb





  

2

4 2

3 2

1 16

0,289 1 1,18

1 1,57
z

a

d di h
bh d

bh



 


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Profile standardizate 
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Caracteristici geometrice ale secțiunilor folosite la calculul de torsiune 

 
Nr. 
crt 

Forma secțiunii 4
t mmI  
 

 

 

3
tW mm 
 

 Punctele cu 
 max  

Obs. 

 
 
 

1. 

 

D
 

d  

 

 4 4

32

D d 
  

 
4

41
32

D



 

 

 

 4 4

16

D d

D

 
  

 
3

41
16

D



   

- pe conturul exterior  

 4 4max
16 tDM

D d
 


 

- pe conturul interior : 

max   

 
 

d

D
   

 
 

2. 

 

d
 

 

 
4

32

d
 

 
3

16

d
 

- pe contur : 3max
16 tM

d



  

 

 
 
 
 

3. 

 
 

D
 

d 

 

 
4

1

16

k D
 

 
3

8

k D
 

max  - în fundul crestãturii Valorile coeficienþi-lor 
sunt : 

d

D
 

 
0,05 

 
0,1 

 
0,2 

 
0,4 

 
0,6 

 
0,8 

 
1,00 

 
1,50 

k 0,89 0,82 0,81 0,76 0,66 0,52 0,38 0,14 

1k  1,56 1,56 1,46 1,22 0,92 0,63 0,38 0,07 

 
 
 



REZISTENȚA MATERIALELOR ANEXA 4 

 

267 
 

 
Nr. 
crt 

Forma secțiunii 4
t mmI  
 

 

 

3
tW mm 
 

 Punctele cu 
 max  

Obs. 

 
 
 
 

4. 

 

D 

h
 

 

3,35
4 2

4,74
h

D
D

 
 
 

 
2,823 2

22,9

D h

D

 
 
 

 max
  - la mijlocul tãieturii 2 8

D

h
   

 
4

2,6 1
16

D h

D

 
 

 
 

3 2,6 1

8 0,3 0,7

h
D D

h

D

 
 

 
  
 

 
 

max
  - la mijlocul tãieturii 

 

0,5 2
D

h
   

 
 

5. 

 

D 

h
 

d
 

 

 
 

40,053 D  

 
 
 

 
 

30,087 D  

 

  
 
2D d  

  0,875h D  

 
 

 
 
 

11. 

 

h
 

b  

 
 
 

3khb  

 

 
 
 

2
1k hb  

max
  - la mijlocul laturii mari. 

Pe latura micã : 
 

max2k   

 
Valorile coeficienþi - 

lor k, k1 si k2 sunt : 

n 1 1,2 1,5 1,75 2 2,5 3 4 5 6 8 10 

k 0,141 0,166 0,196 0,214 0,229 0,249 0,263 0,281 0,291 0,289 0,307 0,312 

k1 0,208 0,219 0,231 0,239 0,246 0,258 0,267 0,282 0,291 0,299 0,307 0,312 

k2 1,00 0,93 0,86 0,82 0,79 0,77 0,75 0,74 0,74 0,74 0,74 0,74 
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