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TENSIUNI LA
SOLICITAREA
COMPUSA A BARELOR
DREPTE

1.1. Consideratii generale

In cazul in care in sectiunile transversale ale barelor existd o singura
componenta a eforturilor sectionale se spune ca barele sunt supuse la
solicitari simple (tractiune-compresiune, forfecare, torsiune, incovoiere).
Daca, din contra, in sectiunile transversale exista mai multe componente
ale eforturilor sectionale bara este supusa la solicitari compuse.

Problema principala care apare in cazul solicitarilor compuse este
aceea a determindrii tensiunii echivalente o,,. Astfel, exista urmatoarele

doua situatii generale:

a)

b)

In cazul in care, in sectiunea transversala exista eforturi
sectionale de aceasi natura (intindere-compresiune cu
incovoiere sau forfecare cu torsiune) tensiunile care apar sunt
de acceasi natura (tensiuni normale o sau tensiuni tangentiale
7 ) tensiune rezultanta fiind obtinuta prin insumarea algebrica a
acestora (aplicarea principiului suprapunerii de efecte);

In cazul in care in sectiunile transversale apar, in acelasi timp,
tensiuni de natura diferitda, normale o si tangentiale 7, atunci
tensiunea rezultanta (echivalentd) se determina pe baza
teoriilor de rezistenta.

Problemele se rezolva pornind de la conditia de rezistenta:

o, <0, (1.1)

ech —
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unde tensiunea echivalenta o,, se determina prin una din variantele mai

sus mentionate si se compara cu tensiunea admisibila o, corespunzatoare
unei stari limita.

1.2. Solicitarea de tractiune-compresiune cu
incovoiere (solicitari o - o)

1.2.1. Consideratii generale

In cazul solicitirilor de tractiune-compresiune si de incovoieree
apar aceleasi tipuri de tensiuni: tensiuni normale ¢ . Tensiunile normale se
calculeaza conform relatiilor:

. s . . N
a) 1n cazul solicitarii de tractiune-compresiune o =+ i cu semnul

(+) tentru tractiune si semnul (-) pentru compresiune;

. O : M, .
b) In cazul solicitarii de incovoiere o, = il—y, pentru cazul in
z

M
care momentul este pe directia spatiala Oz si o), = iI—'yz,

y
pentru cazul in care momentul este pe directia spatiala Oy .
Cele doua tensiuni fiind de aceasi natura, se mai spune ca solicitarea
compusa este de tip o—o . In cele ce urmeaza se prezinta doua cazuri, des
intalnite In practica, de solicitare compusa de tip o—o.

1.2.2. Grinda incarcata cu forta inclinata

Se considera o bara incarcata cu forta F inclinatd, cu un unghi «,
care este aplicata intr-un plan principal central de inertie (figura 1.1).

Grinda se considera a fi dreapta, de sectiune constanta si ca urmare
aria acesteia ( A) si momentul de inertie axial (/, ) sunt constante.

Din diagramele de eforturi sectionale rezulta existenta unei
solicitari de compresiune si a unei solicitari de Incovoiere.

Tensiunile normale rezultante din aceste solicitari se calculeaza
conform relatiilor cunoscute de la solicitarile simple:

7
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e solicitarea de tractiune:

N F-cosa
o = — = 1.1
£ =7 2 (1.1)
e solicitarea de Incovoiere:
— I\;Iiz yot Fab-Isma (1.2)

YV

e
¥ ML ==

o WMIEATIINIO) (¥ sina)/
(Fasincr)/2 J{1[TEATDTONTEE " STCNTATTRTERERVET

(Fab sina)/!

M;

Figura 1.1

Tensiunile date de relatiile (1.1) si (1.2) sunt de acceasi natura si, ca
urmare, valoarea rezultanta se obtine prin fnsumarea lor:

M.
Zy, (1.3)

z

N
0'1,2 = Zi

valoarea maxima fiind:
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N M,
o=—+—"Ly. 1.4
2 7Y (1.4)

z

Ca urmare a actiunii fortei axiale axa neutra nu va mai trece prin
centrul de greutate. Determinarea pozitiei axei neutre se face prin egalarea
valorii tensiunii data de relatia (1.4) cu zero:

N M
_-}-—IZ =0’ 1.5
(7 y (1.5)

z

de unde rezulta pozitia axei neutre (figura 1.2):

=—— 2, (1.6)

yan:_

N
Mi

unde i, este raza de inertie:

i, =% (17)

11:

FUSE R & Ay P

i 1

I
I
|
| %

¥y

Figura 1.2

Pe baza relatiilor de mai sus, rezulta ca axa neutra intersecteaza
sectiune transversala daca este Indeplinita conditia:
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(1.8)

adica, tensiunea maxima rezultata din solicitarea de 1ncovoiere este mai
mare ca cea rezultata din solicitarea de trectiune-compresiune.

1.2.3. Compresiunea excentrica a barelor de inaltime mica

Se considera bara de sectiune constanta asupra careia actioneaza o
fortd F pozitionatda intr-un punct P diferit de centrul de greutate
(figura 1.3,a). Sistemul de coordonate se considera a fi format din axele
principale de inertie Gy si Gz (figura 1.3,a sib).

Cotele punctului P sunt y, si z, (figura 1.3,b). Ca urmare a actiunii

fortei in punctul indicat, neglijand greutatea proprie a stalpului, intr-o
sectiune transversala se vor dezvolta urmatoarele eforturi sectionale:

e o forta axiala:
N=F;
¢ un moment de Incovoiere orientat de-a lungul axei Gy :
Ml.y =F-z,;
e un moment de incovoiere orientat de-a lungul axei GZ:
M, =F-y,.
Se considerd un punct oarecare B de coordonate (y;,z,), in

cadranul pozitiv (primul cadran - figura 1.3,b).

Ca umare a celor trei eforturi sectionale, in punctul C se vor
dezvolta trei tensiuni normale ¢ ca urmare a trei solicitari:

e compresiune:
o.=—; (1.9)

e 1incovoiere datorata momentului de incovoiere orientat de-a
lungul axei Gy :

M .
0,=x—"z _i 2, (1.10)
y

iy B B;
I)’

e un moment de Incovoiere orientat de-a lungul axei Gz:

10
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M, :
o,=t—"%y, == Vg (1.11)

F

G/
-/
v

¥

Figura 1.3

In primul cadran, tensiunile dezvoltate de la compresiune si
incovoiere au, toate, efect de compresiune. Ca urmare, pe baza relatiilor
(1.9) + (1.11) tensiunea normala totala dezvoltata in punctul B este:

F F-z F-
Oy ==0, =0y =0y ==~ IPZB— IyPyB. (1.12)

y y

Relatia (1.12) poate fi rescrisa, tinand cont si de relatia (1.7), sub
forma:

F
o, =——| 1+ 220 4 ZeZs | (1.13)
A I [,

Se pune problema determinarii pozitiei (coordonatelor) axei neutre.
Pentru aceasta se considera ca punctul B este situat pe axa neutra (o, =0)

si ca urmare, din (1.13), rezulta ecuatia:

11
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1+yP_£VB+Z‘fzzB:O. (1.14)
1 1
z y

Din relatia (1.14) rezulta ca axa neutra este o dreapta a carei puncte
de intersectie a celor doua axe de coordonate sunt determinate prin
considerarea, succesiva, a valorilor y, =0 si z, =0:

V=0 = z,=——=2z_;

ZB:0 = yB:_ - :-ya.n.'
P

Asa cum rezultd, axa neutra imparte sectiunea transversala in doua
parti in care se dezvolta tensiuni normale pozitive si tensiuni normale
negative (figura 1.3,b).

Pe baza relatiilor (1.14) si (1.15) pot fi concluzionate urmatoarele:

a)

b)

c)

d)

e)
f)

g)

h)

valoarea tensiunii normale o dintr-un punct oarecare este
proportionala cu distanta de la punctul respectiv la axa netra;

in cazul in care axa neutra nu intersecteaza suprafata sectiunii,
atunci tensiunea normala este de compresiune pe intreaga
sprafata a sectiunii;

axa neutra trece prin cadranul opus celui in care se afla aplicata
forta;

in cazul in care nu este considerata greutatea proprie a stalpului,
pozitia axei neutre depinde numai de coordonatele punctului de
aplicare a fortei (1.15);

axa neutra se indeparteaza de centrul de greutate al sectiunii
atunci cand forta de compresiune se aproprie de acesta si invers;
daca forta aplicata se deplaseaza pe o axa care trece prin centru
de greutate, atunci axa neutra se deplaseaza paralel cu ea Insasi;

daca axa neutra se deplaseaza de-a lungul uneia dintre axele
principale de inertie, atunci axa neutra se deplaseaza paralel cu
cealalta axa principala de inertie;

tensiunea produsa intr-un punct oarecare B, ca urmare a
aplicarii unei forte de compresiune intr-un punct P este egala cu

12
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tensiunea produsa in punctul P daca forta este aplicatda in
punctul B;

i) daca forta F este aplicata intr-un punct oarecare de pe axa
neutra rezulta ca In punctul P tensiunea este egala cu zero;

Exemplul 1.1
Se considera stalpul din figura 1.4 Incdrcat cu fortele F, =3F, F,=6F
si F,=8F . Cunoscandu-se faptul ca materialul din care este confectionat

stalpul are o, = 120MPa sicota a = 40mm se cer:

a) sa se determine forta capabila F,, din conditia de rezistenta

Ok S04

m.

b) sa se traseze axa neutra.

Rezolvare:

a) Pentru inceput, se determind incarcdrile date de cele trei forte care
actioneaza asupra stalpului. Se analizeaza fiecare fortd, in parte, conform
tabelulului 1.1

Tabelull.1
Forta N M, M,
F, —-3F F, -3a=3F -3a=9Fa —F, -2a=-3F -2a=-6Fa
F, 0 —F,-10a=-6F -10a=-60Fa 0
F, -8F 0 0
> -11F —54Fa —6Fa
Tensiunile care apar sunt:
11F 11F F
o,=———=- >=-0,458—
A 24a a
M,
o =ty O4Fa 05 F
Y w, 4a-(6a)’ a’
6

13
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o=+ Me_y OF1 5375 F
w, 6a-(4a) a
6

=

10a

a
o
I I s P M -
S 3a 7 Za 2a
F
a)

-3,083 F/a?
0,375F/a?
+

TSI

0,458F /a2 0,375F /a2

2,25F /a2 ”@ﬂﬂﬂ”‘”":

b)
Figura 1.4

14
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Tensiunile normale in cele 8 puncte considerate in figura 1.4,b sunt:

Punctul ®: o, = —0,45852 + 0,375£2 + 2,2552 = 2,167£2
a a a a
Punctul @: o, = —0,45852 + 0,37552: —0,08352
a a a
Punctul @: o, =-0,458- +0,375° — 2257 — 23335
a a a a
Punctul ®: o, = —0,45852 - 2,25£2 = —2,70852
a a a
Punctul ®: o, = 0,458 0,375 2,25 =-3,083%
a a a a
Punctul ®: o, = —0,45852 - O,375£2 = —0,83352
a a a
Punctul @: o, = —0,45852 - 0,37552 + 2,25£2 = 1,417£2
a a a a
Punctul ®: o, = 0,458 + 2,257 =1,792
a a a

Din analiza tensiunilor de mai sus, rezulta ca cea mai mare tensiune,
in valuare absolutd este tensiunea o5 .

Punand conditia de rezistenta:
F

| o | <o, rezulta 3,083— <o,
a

Inlocuind valorile numerice: o, =120MPa si cota a=40mm se
obtine:
0, a _120-40°

F, < = = 62.277(N)
73,083 3,083

b) pentru determinarea pozitiei axei neutre se considerd, in primul cadran
al sectiunii, un punct oarexare K de coordonate y, si z, (figura 1.4,b).

Tensiunea totala in punctul K este formata din:

e tensiunea normala de compresiune:

15
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o, :—E =— 111;; = —0,458£2
A 24a a

e tensiunea normala datorata incovoierii pe directia Oy :

M.
o, = —z, = 54—Fa32K: 0,75532,(
I, 4a-(6a) a
12

e tensiunea normala datorata incovoierii pe directia Oz :

M. 6Fa F
o =——r = =-0,1875—
'Z I Yk 6a-(4a)’ Yk a’ Yk
12

Ca urmare, tensiunea totala este:

o, =—0458° 10755 018755
a a a

Punindu-se conditia ca punctul K sa fie situat pe axa neutrs,
rezulta conditia:

o, =-0458" 10755, —018755 y, =0
a a a
sau:

—-0,458 + 0,7512,( —0,18751y,{:0.
a a

Pentru trasarea axei neutre se considera in ecuatia de mai sus, pe
rand (Figura 1.4,b):

z,=0 = —0,458—0,187551)/,(:0 = y, =-2,442a

V=0 = -0,458 + 0,7512,( =0 = z,=0,61a
a

16
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Exemplul 1.2
Se consideragrinda din figura 1.5 icarcata cu o forta distribuita, de

: : F . < <
intensitate g=— si o forta concentrata F.
a

Considerand: a=1m si F=30kN se cere sa se verifice grinda, la

solicitarea compusa de iIntindere/compresiune cu incovoiere, pentru o
valoare a tensiunii admisibile a materialului grinzii o,=140MPa . Sectiunea

grinzii este de forma patrata cu latura b=200mm.

3,125a - 0,875F
M; ‘ Fa
4,822Fa 3,625Fa
Figura 1.5

Rezolvare:

Pentru calculul de verificare este necesara trasarea diagramelor pentru
evidentierea locului In care are loc solicitarea cea mai mare. Ca urmare, se
determina reactiunile X, , Y, si Y,:

a) calculul reactiunilor:
>X=0; X,—-F=0,deunde rezulta: X,=F

>M,=0; Y,-8a—-q-4a-6a—Fa=0 sauY,-8a—-25Fa=0,
de unde rezulta: Y, = 3,125F

17
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>M,=0; Y,-8a + Fa—q-4a-2a =0 sau Y,-8a —7Fa =0
de unde rezulta: Y, =0,875F
Verificare: >)Y =Y, —q-4a+Y, =3,125F —4F + 0,875F =0

b) Diagrama de forte axiale: N, ,=-X,=-F; N, , =-X,+F=10

c) diagrama de forte taietoare

F {x:o T, =3,125F;

T, . =Y, —gx=3,125F — —x =
a1= ¥4 —4q a x =4a T,=-0,875F.

T,,=0= x=3,125a
T, , =-0,875F
d) diagrama de momente incovoietoare:
, i x=0 M, ,=0

M,y =Y,x~ CIX— =3,125Fx - ——=1 x=3,125a M, = 4,822Fa
' 2 2a
x=4a M, =4,5Fa

M, , =Y,(4a+x) - 4qa(2a+x) =3,125F(4a+x) — 4F(2a+x) = 4,5Fa —0,875Fx

x=0 M, =45Fa
M, , =4,5Fa —0,875Fx = ,
. X=a Mi’2 =3,625Fa
x=0 Mi,3 =0
X=da M_‘2 :Fa

1

M, =Fx :{

18
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x=0 Mi'B:0

M, ,=Y,x=0,875Fx =
: x=3a M,=2,625Fa

Din diagramele de eforturi sectionale rezulta ca cel mai solicitat
punct este punctul in care momentul incpvoietor este cel mai mare. In acest
punct avem urmitoarele tensiuni normale:

. N F 310
e de compresiune: o,=——=—-—=———=-0,75MPa
A A 200

e deincovoiere:

o -4 M, _, 4822Fa _ 28932Fa =i28,932-3-104 -10°
W, b* b* 200°
6
Distributia tensiunilor este prezentatd in figura 1.6. Din aceasta
distributie rezulta ca tensiunea maxima este in fibra b—b, unde ambele

=+ 108,495MPa

tensiuni normale, de la compresiune si de la incovoiere sunt negative:

N Miz
Crowal =7 0 T s

V4

0,.. =—109,245MPa < o,

b : b 0,75MPa 108,495 MPa
]
|
|
]
|
|
]
]
Zl . [ N-O= N A
[}
= !
ZK 1
K I
]
! /
]
c | c 108,495 MPa .
]
]
(4
Figura 1.6
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Pentru determinarea pozitie axei neutera se considera punctual K
si se calculeaza tensiunea din acest punct:

_F_4822Fa
At Yk

z

oy =
si se pune conditia ca acest punct sa fie situat pe axa neutra: o, =0, adica
4,822-3-10*-10°

200*
12

o, =—0,75 + y, =—0,75+1,08495-y, =0 = y,=0,691

1.2.4. Samburele central

Din relatia (1.13) a tensiunilor normale o si pe baza figurii 1.3,b se
poate afirma ca, in functie de pozitia punctului de aplicare a fortei
excentrice de compresiune F, tensiunile din sectiune vor fi de semne
diferite numai daca axa neutra traverseaza sectiunea avand acelasi semn
daca axa neutra este in afara sectiunii.

Tindnd cont de faptul ca pozitia axei neutre depinde de punctul de
aplicare al fortei de compresiune F, se pune problema precizarii zonei
cuprinsa in sectiunea transversala in care se poate aplica forta transversala
astfel incat tensiunea normala o sa aiba acelasi semn.

Prin definitie, domeniul din sectiune din jurul centrului de greutate al
acesteia, in interiorul cdruia poate fi aplicatd o fortd normald excentricd,
astfel incat tensiunile nirmale o sd aibd acelasi semn pe intreaga sectiune,
se numeste sdmbure central.

In cazul in care, punctul de aplicatie B , de coordonate (yB,zB ), al

fortei F, se afla in interiorul sdmburelui central, atunci axa neutra este
pozitionata In afara sectiunii. Limita dintre pozitionarea axei neutre in
suprafata sectiunii transversale si spatiul din afara acesteia il reprezinta
conturul sectiunii.

Ca urmare, cand axa neutra va fi tangenta la conturul sectiunii
transversate, punctul de aplicatie al fortei se va situa pe limita domeniului
samburelui central.

Se considera o sectiune oarecare la care se considera pozitia axei
neutre ca fiind tangenta la contur (figura 1.7).
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Considerandu-se o anumita pozitie tangenta a axei neutre (a.n.) la
contur, pozitia punctului P, de aplicare al fortei F, de coordonate

(¥s,2, ), vafi determinat pe baza relatiilor (1.15):

(1.16)

(1) (n)

(n

(n2) (n2)

Figura 1.7

Din relatiile (1.16) se poate observa faptul cd, in cazul in care
sectiunea transversala are forma unui poligon, atunci si samburele central
va avea o forma de poligon. In cazul sectiunilor transversale curbe si
samburele central va avea formi curbi. In continuare sunt prezentate
metodele de determinare a simburelui central pentru o serie de sectiuni
transversale uzuale.

a) Determinarea samburelui central pentru o sectiune transversala
dreptunghiulara

Se considera o sectiune transversala dreptunghiulara de cote bxh
(latime x inaltime) (figura 1.8).
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Axele tangente la contur coincid, practic, cu laturile dreptunghiului
rezultdnd 4 axe neutre. Considarand axa neutra n,—n,, tdieturile pe axe

h .
sunt: ya.n.:E sl z, =o.

<Z E:( <
BULN
(n) y(n1)
(n2)
v
Figura 1.8

Ca urmare, pe baza relatiilor (1.16), punctul de aplicatie al fortei

este:
i7 h
Yp1 =~ == g ’
ya.n.
2 .2
i i
Zp =——=-==0
Za.n. w
Pentru axa neutra n,—n, , pe baza aceluiasi rationament, dar cu
2 2 ’ b
. . b .
valorile y,, =0 si z, = > rezulta cotele:
.2
i i
yPZ :—;:——Zzo,
-ya.n. w
.2
ly b
ZPl - ==_:
A 6

Pentru celelate laturi se repeta calculul rezultind un romb
prezentat in figura 1.8.
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b) Determinarea samburelui central pentru o sectiune transversala
circulara

Se considera o sectiune transversala dcirculara de raza R
(figura 1.9). Sectiunea fiind simetrica se considera un singur caz, tangenta
axei neutre la cerc intr-un singur punct.

il |

\_

(n) (n)

L

Figura 1.9
Plecand de la relatiile (1.16), considerand y,, = R, rezulta:

__ & ___ =R _ R
' y,,  A47R’R 4

A : . R
Samburele central va fi un cerc cu raza egala cu 7

1.3. Solicitarea cu tensiuni tangentiale (solicitari de
tipr—7)

1.3.1. Consideratii generale

Acest caz implica fie combinarea solicitarilor de forfecare ca urmare

a actiunii fortelor de forfecare pe cele doua directii, fie combinarea

solicitarii de forfecare cu solicitarea de torsiune. In ambele situatii
23
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tensiunea rezultanta este tot o tensiune tangentiala 7. Ceea ce este
important de mentionat, este faptul cd, in general nivelul tensiunii
tangentiale determinata de actiunea unui moment de torsiune este mai
mare comparativ cu tensiunea tangentiala determinata de actiunea fortelor
taietaare.

1.3.2. Tensiuni tangentiale datorate numai actiunii fortelor
taietoare

Se considera sectiunea din figura 1.10 In care, in centrul de greutate
actioneaza doua forte taietoare T, si T,. Pornind de la relatia lui Juravski,

tensiunile tangentiale corespunzatoare celor doua forte de forfecare,
dezvoltate in punctul P, sunt:

TS,
TxyP = byI )
‘’ 1.17
rs, (1.17)
TXZP = b
hYIy

unde b, este latimea sectiunii in dreptul punctului P, pe directia Gz, iar h,

este latimea sectiunii in dreptul punctului P, pe directia Gy .

b

Figura 1.10
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Pe baza relatiilor (1.17) tensiunea tangentiala totala in punctul
considerat P este:

2 2
Ttot,p = Txy T Ty - (1'18)

1.3.3. Solicitarea compusa de torsiune cu forfecare. Calculul
arcurilor elicoidale cu spire stranse

Unul din elementele cel mai des utilizate in structurile mecanice il
reprezintd arcurile elicoidale cu spire stranse. Principala actiune a acestora
este atenuare a deformatiilor si ca urmare ele au capacitatea de a
inmagazina de energie potentiala de deformatie. Prin actiunea pe care o au
fortele asupra lor, ele sunt comprimate sau intinse.

Se considera arcul elicoidal din figura 1.11 asupra caruia actioneaza
centric (de-a lungul axei arcului) o forta F. Arcurile elicoidale se defines
prin diametrul de infasurare al spirelor D = 2R, diametrul sarmei din care
sunt realizate spirele arcului d, numarul de spire active n si unghiul de
infasurare al arcului « .

In cazul in care, unghiul de infasurarea este mai mic de 10°, atunci
arcul elicoidal se spune ca este cu spire stranse. Calculul arcurilor se
reduce la determinarea solicitarilor care apar in sectiunea transversala a
spirelor.

Figura 1.11
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Pentru acest calcul, se reduce forta F in centrul de greutate al
sectiunii transversal (figura 1.12).

1

Figura 1.12

Aceasta forta se descompune in doua componente:

e 0 componenta care este perpendiculara pe sectiunea transversal
a spirei si care determinad aparitia fortei axiale:

N =Fsina; (1.19)

e 0 componenta situate In planul sectiunii transversale a spirei si
care determinad aparitia fortei taietoare:

T =Fcosa; (1.20)

In acelasi timp, forta F determina aparitia In spira arcului a unui
moment egal cu:

M=r2_Fg, (1.21)

care se descompune In urmatoarele doua componente:
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¢ momentul incovoietor, continut in planul sectiunii:

M; = Msina; (1.22)

e momentul de torsiune, perpendicular pe planul sectiunii:

M, =Mcosa. (1.23)

Avadu-se in vedere valoarea mica a ungiului ¢ (a<10°) se pot face
aproximadrile sinae=0 si cosa=1 si, ca urmare, rezulta ca principalele
eforturi sectionale sunt:

e forta taietoare:

T=Fcosa=F; (1.24)

e momentul de torsiune:

M, =Mcosa. (1.25)

Tindnd cont de relatia de calcul a tensiunii tangetiale maxime de
forfecare 7 ,, data de relatia lui Juravski si de relatia de calcul a tensiunii

tangentiale maxime din cazul torsiunii 7, , tensiunea totala in spira

arcului va fi egala cu:

Ttotmax = ¢ fmax T 2-l:max_ (1.26)

2 3
Inlocuind expresiile ariei A=% si ale modulului w, =%, si

A < . FD <
tinand cont ca momentul de torsiune este M, = — rezulta:

4 4F FD 16 16 F +16FR_16F(1 R

Teot = 5 §+E

+ =— = ,(1.27)
3zd* 2 zd® 3 xd*? rxd*® rd? j
unde, prin R s-a notat raza de Infasurare a spirei ( R=D/2 ) .

Distributia tensiunii tangentiale la suprafata transversal a spirei
este prezentata in figura 1.13, unde s-au facut notatiile: - tensiunea

f,max
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tangentialda maxima la forfecare si 7, , - tensiunea tangentiald maxima la

torsiune.

M; :
T
E Tt max
N
‘Tfmax
Figura 1.13

Conditia de rezistentd a spirei arcului se exprima prin relatia:

+r, <z. (128)

t max a

T

totmax Tfmax

In practica, se consideri ca influenta efortului dat de forta tiietoare
este mult mai mica comparativ cu efectul momentului de torsiune si, ca
urmare, relatia de calcul folosita in calculul de rezistenta este conditia de
rezistentd de la torsiunea barelor drepte de sectiune circulara:

Mo _16FR _

r = (1.29)

=W rd’®

p

a*

In practici, relatia (1.29) este corectatd printr-un coefficient de
corectie k, care tine cont de de influenta forfecarii cat si de o serie de alti

factori care nu sunt luati in considerare, precum: incovoierea, deformatiile
longitudinale etc.

Valoarea coeficientului k, este stabilita In functie de raportul dintre
raza de Infisurare a spirei Rsi raza sectiunii circulare a spirei r (R/r)

(tabelul 1.2).
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Tabelul 1.2.

R/r 3 4 5 6 7 8 9 10

k 1,58 1,40 1,31 1,25 1,21 1,18 1,16 1,14

a

Din relatia de mai sus rezulta diametrul necesar al sirmei spirei

arcului:
d> 3/ 16FR ) (1.30)
T,

Valoarea coeficientului k este cu atat mai mare cu cat raportul R/r

(r - raza sarmei arcului, r=d/2) este mai mic, adici cu cit arcul este mai
rigid din punct de vedere geometric.

1.4. Solicitarea cu tensiuni tangentiale (solicitari de
tipo —1)

1.4.1. Consideratii generale

Solicitarile compuse de tip 0 —7 reprezinta cea mai mare parte a

solicitarilor intalnite in tehnica. In acest caz pot si apard combinatii intre
solicitari simple care genereaza tensiuni normale o
(Intindere/compresiune si/sau Incovoiere) cu solicitari care genereaza
tensiuni tangentiale 7 (forfecare si/sau torsiune).

In cazul acestor solicitdri se determina o tensiune echivalenta o,
care se compara cu tensiunea admisibila o,. Tensiunea echivalenta o,, se
determina pe baza teoriilor de rezistenta, cele mai folosite fiind teoriile III

siV.

1.4.2. Cazul unei bare de sectiune circulara incastrata

Se considera bara din figura 1.14, de sectiune circular de diametru
d incircati cu fortele F, =F, =10F, F, =20F . Materialul din care este
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confectionatd bara are tensiunea admisibila la rupere o,. Cotele
geometrice sunt prezentate in figura 1.14.

Figura 1.14

Se cer:

a) sase traseze diagramele de variatie a fortei axiale N si de variatie a
momentelor de incovoiere M; si de torsiune M, ;
b) sd se determine forta capabila F,, din conditia de rezistenta

Oechmax S O » folosind ipoteza a Ill-ia de rupere (se va neglija efectul

de forfecare).

Rezolvare:
a) - forta axiala este constanta intre punctele @ si @ fiind egala cu:

N3 = F, + F, = 10F + 20F =30F
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- momentul incovoietor are urmatoarele componente:
e dela ®la @ forta F; genereazd momente atat dupa directia Oy cat

si dupa directia Oz. Ambele momente sunt constant si egale in
modul cu:

d d
Tinand cont de sensurile positive ale axelor Oy si Oz se poate
constata ca ambele sunt negative.
e dela @ la @, ca urmare a actiunii fortei F; apare un moment

incovoietor suplimentar, orientat pe directia Oz, In sens negativ.
Momentul suplimentar este variabil avand valoarea M;,, =0 in

punctual @ si M,,; = F;-5d =10F -5d = 50Fd, fiind negativ ca sens.

Ca urmare, in punctul @ momentul total incovoietor dupa directia
Oz estee M, =-25Fd, iar in punctul @ este:

M =—2,5Fd - 50Fd = —52,5Fd .

iz3,tot
- momentul de torsiune M, se manifesta numai Intre punctele @ si @ fiind

determinat de forta F; si este constant: Mt=F3~g=1OF-g=5Fd.

Momentul roteste in sensul pozitiv al axei Ox .
Diagramele sunt prezentate in figura 1.15.

b) calculul tensiunii echivalente se face pornind de la solicitarile simple
maxime rezultate din diagramele din figura 1.15.

In cazul solicitarilor de tractiune tensiunea maxima este de:

In cazul solicitarilor de incovoiere avem memente care se dezvolta
dupa ambele directii Oy si Oz. Ca urmare, se calculeaza un moment

Incovoietor echivalent:

M, = M; + M. =Fd52,5 + 2,5 =58,75Fd.
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30F £+ 5 .

2,5Fd

N Mj, M,

Figura 1.15

Tensiunea normal echivalentd, rezultatd din solicitarea
incovoiere, va fi:

o =% _ 58,75F§1-32 =598,422£2.
W d d

VA
Tensiunea normal totala va fi:

Ot =0, + 0, = (58,75 + 598,422)% = 657,172%.

i,ech —

de

In cazul torsiunii tensiunea dezvoltata este una tangentiala calculate

cu relatia:

M, _5Fd 16 =25,464§.

w zd?

p
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Aplicand ipoteza a [ll-ia de rupere, tensiunea echivalenta este:

O =N O+ 477 = §J657,1722 +4-25,464* = 659,142%

Din conditia de rezistenta (o, < o,) vom obtine:

ech,max —

o

ech,max

<o, = 659,142% <o, din care rezultd F < 0,001510,d”.

1.4.3. Arbori drepti

Se considera arborele din figura 1.16 pe care sunt montate doua roti
de curea in punctele @ si @. Arborele este ,rezemat” pe doud lagare de
rostogolire, In punctele A si B. Se cunosc urmatoarele date:

e Distanta a=100mm;

e Puterea motorului care antreneaza arborele P =15 kW ;
e Diametrele D, =500mm si D, =300mm ;

e Turatia motorului n=1000rot/min;

e Tensiunea admisibila a materialului din care este confectionat
arborele o, =140 MPa.

Se cere si se determine diametrul minim al arborelui d astfel Incat
arborele sa nu se rupa. Se va folosi ipoteza a IlI-ia de rupere.

Rezolvare:
Pentru rezolvare se parcurg urmatoarele etape:
Etapa 1 - se determind momentul de torsiune transmis la arbore.

Deoarece puterea este dati in kKWW formula de calcul a momentului
de torsiune este:

PIkW] 15

M, =9,55- 9,55 =0,14325 [kNm] = 143.250 [Nmm]

n[rot /min] -
Etapa 2 - determinarea valorilor fortelor S, si S, din curele.
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Determinarea se face pornind de la calculul momentului de torsiune
pentru fiecare roata in parte.

3S1
®
— od >
B -
______________________ S Ep—— 1 IS
[ z
<2 Sl 4a >l< 3a >
y
Figura 1.16
Roata ®

D D
M, =35,~ =S, =t =S,D,.

Inlocuind valoarea momentului de torsiune M, si pe cea a

diametrului D, rezulta pentru forta S, valoarea:

143.250[Nmm|=S, -500[mm] = S, =286,5[N |

Inlocuind valoarea momentului de torsiune M, si pe cea a diametrului D,

rezulta pentru forta S, valoarea:

143.250[Nmm|=S,-150[mm] = S, =955,0[ N |
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Etapa 3 - se determina rezultantele fortelor din curele.

e Asa cum rezulta din directiile curelelor, fortele S, vor aaveaa o
rezultanta R, =3S,+S, =45, care va actiona de-a lungul axei Oy
(figura 1.17), in sensul negativ ala cesteia, in punctul ©.

e Fortele S, vor da o rezultanta R, = 2S,+S, =35, care face cuaxa Oz un
unghi de 45° (figura 1.17), in punctul @.

Rezultanta R, facand un unghi de 45° cu axa Oz va avea doua proiectii:

3S1

N

A

Figura 1.17

o PeaxaOy: R,, =R,sin45’

e PeaxaOz: R,, =R,co0s45’
Observatie:
e Componenta R,, este indreptata in sensul pozitiv al axei Oy iar

componenta R, este orientata in sensul negativ al axei Oz.

Etapa 4 - se determind schema de incarcare a arborelui si se traseaza
diagramele.
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Pentru aceasta etapa se considera arborele ca o grinda rezemata in
punctele in care sunt rulmentii si se figureaza, in @ si @, proiectiile fortelor
rezultante R, si R,, pe cele doua axe (directii) Oy si Oz (figura 1.18).

Pentru reprezentarea corecta a directiilor de actiunea fortelor de-a
lungul celor doua axe se considerd, arbitrar un sens pozitiv (v. Figura 1.15
- directia ,,Oy” pozitiva si directia ,0z” pozitiva - stanga figurii).

RZy
A 0) B @
y |
lA T A 4a = 3a
Ya Ry "M izB
@)
RZZ

Figura 1.18

e Diagrama de momente de incovoiere dupa directia, 0z "

Proiectiile fortelor pe directia ,0y” genereaza momentele de incovoiere
de-a lungul axei ,0z”". Pentru inceput se determina reactiunile din punctele
A si B:

> My;=0=Y,-5a-R, -4a-R,,-3a =0

YA:4-R1 +3R,, _4-1146+3-2865-0,707
5 5
Reactiune din punctul B este orientatd in sus si are valoarea
Y,=3011,688[N].

=2132,133[N]

Valorile de moment in punctele ® si B vor fi:

M, =Y, a=2132,133-100 = 0,2132133-10° [Nmm]
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M., =R, -3a=2865-0,707-300 = 0,6076665-10° [Nmm]

e Diagrama de momente de incovoiere dupa directia, Oy ”

Proiectiile fortelor pe directia ,0z" genereaza momentele de
incovoiere de-a lungul axei ,0y”. Pentru Inceput se determina reactiunile
din punctele A si B.
3R,, 3-2865-0,707

s =

> M,=0 = Z,-5a-R,,-3a =0 Z,= =1215,333[N]

Reactiune din punctul B este orientatd In jos si are valoarea
Z,=3240,888[N].

Valorile de moment in punctele @ si B vor fi:

M,, =R,, -3a =2865-0,707-300 = 0,6076665-10° [Nmm]

Pentru determinarea de Incovoiere dupa directia ,, Oy ” se determina
prin asemanare:

M. M.
2 - 5_a’ de unde rezulta: M,.y1 = S'yB =0,1215333-10° [Nmm)]
a

Momentul de torsiune este constant ca valoare si se manifesta intre
cele doua roti de curea:

M, =0,14325-10°[Nmm].
t

Etapa 5 - determinarea tensiunii echivalente.
Conform ipotezei a Ill-ia tensiunea echivalenta este:

N 2 2
O, =0 +4r
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Tensiunea normala o este determinata de solicitarea de incovoiere

. , . . M.
si, ca urmare, va fi data de relatia: o =—-, unde W, este modulul de

z

rezistenta la Incovoiere.
Observatie:

e Fiind o sectiune circulara tensiune poate fi calculata si in functie de W,

rd’
deoarece W, =W, = ——.
32
Tensiunea tangentiala 7 este determinata de solicitarea de torsiune

< . M . <
fiind calculatd cu relatia 7 =—", unde W, este modulul de rezistentd la
p

. . < . d’
torsiune si se calculeaza cu relatia W, = e

Comparand relatiile de calcul ale celor doua module rezulta ca:

Wp = 2W,. Ca urmare, tensiunea echivalenta va fi:

2 2
M, M 1 > 32
Uech: (WZJ + 4' WtJ :W Mi +Mt = d3 Mi +Mt

In continuare este necesara determinarea valorilor maxime ale
momentelui de incovoiere si de torsiune.

Analizand cazul momentelor de incovoiere se constata ca valorile
extreme sunt in punctele @ si B.

In punctul ® momentul incovoietor rezultant va fi egal cu:

M,.1:4/M;1+M;1 = 10°,/0,12115333% + 0,2132133 =0,245230586-10°[ Nmm |

In punctul B momentul incovoietor rezultant va fi egal cu:

M, =M%, + M2, =10°\/0,6076665" + 0,6076665° =0,859370205-10°[ Nmm |

Comparand valorile momentului din punctele @ si B rezulta ca
mometul de incovoiere cel mai mare este in punctul B':
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M,, =0,859370205-10°[ Nmm .

Etapa 6 - Calculul diametrului.

Considerand valorile maxime ale momentelor de incovoiere si
torsiune si punand conditia de rezistenta:

o,, <0,

ech —

se obtine:

32- 106

22 = /0,859370205% +0,14325% <140,
zd

ech —

de unde rezulta:
d> 39,872 mm

1.4.4. Calculul parghiilor drepte spatiale

Un caz aparte il reprezinta parghiile drepte spatiale, care sunt
parghii folosite in diferite sisteme si dispozitive. Ca urmare a sistemelor de
legatura acestea sunt Incarcate de diferite forte si ca urmare a faptului ca
sunt spatiale apar toate cele patru forme de solicitari simple. Calculul
implica determinarea fortelor si a momentelor, calculul realiziandu-se in
punctul de incastrare deoarece fata de incastrare bratele fortelor fotrtelor
fiind cele mai mari.

Pentru exemplificare se considera parghia din figura 1.19 care are o
sectiune dreptunghiulara.

Se considera ca asupra parghiei actioneaza trei forte: F,=1000N,
F,=500N si F,=1500N, iar materialul din care este confectionata parghia
are tensiunea admisibila o, =120 MPa.

Se pune problema dacd pirghia rezisti sau nu in incastrare. In

vederea determindrii stdrii de tensiune se determind componentele
eforturilor din incastrare.

Se analizeaza fiecare Incarcare din incastrare tinand cont de urmatoarele
reguli:
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e Daca fortele sunt indreptate in sensul negativ al axelor Ox, Oy si
Oz, atunci acestea se considera a fi pozitive;

e Dacd momentele sunt indreptate in sensul pozitiv al axelor
acestea se considera pozitive.

F>

615

Figura 1.19

Pornind de la sistemul de axe, din incastrare, din figura 1.19 se
defineste urmatorul tabel:

Forta N T, T M, M, M,
F, 0 —-1000 0 0 —-F,(915-15) | F,(615-15)
F, 0 0 —-500 | F,(915-15) 0 0
E, -1500 0 0 E,-15 F, -30 0
Total | —1500 | —1000 | —=500 | 0,4725-10° -0,855-10° 0,6-10°

In continuare, tinand cont de relatiile de calcul ale tensiunilor, se
determina valorile acestora si se calculeaza tensiunile echivalente in
diferite puncte ale sectiunii (figura 1.20).
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e Tensiunile normale o
- tractine /compresiune: o, = —ﬂ =-0,833 MPa
30-60

- Incovoiere dupa directia 0z :

6
M, _, 085510

c,=t—*=t————=447,5MPa
w, 30-60
6
- Incovoiere dupa directia Oy :
6
oM 0472510
i w, 30°-60
6

e Tensiunile tangentiale
- forfecare dupa directia Oz (relatia lui Juravski):

r =3 _3 500 416 MPa
24 230-60

- forfecare dupa directia Oy (relatia lui Juravski):

T
r, =22 =3 1990 _ 835 mpg
Y 2A 230-60

- tensiunile tangentiale 7 reuzultate din forfecare se trec paralele cu axele
de-a lungul carora actioneaza fortele (se simbolizeaza directia de actiune a
tensiunii care este identica cu cea a fortei rezultante)

- torsiune - fiind sectiune dreptunghiulara calculul tensiunilorse face cu
urmatoarele relatii:

e Tensiunea maxima: . =—t=
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unde k, =0,246 este un coeficient care se gaseste sub forma tabelara si este
determinat in functie de raportul h/b, iar latura b este latura cea mai mica
(tabelul 1.3).
Ca urmare:
.10°
Ty = __06-10° ~=45,167 MPa
0,246-60-30
si se manifesta pe latura cea mai mare.
e Tensiunea de pe latura mica se calculeaza cu relatia:
7,=k,-t_ =0,79-45,167 =35,682 MPa

Tabelul 1.3
Raportul h/b Coeficientul k Coeficientul k, Coeficientul k,
1 0,141 0,208 1,00
1,2 0,166 0,219 0,93
1,5 0,196 0,231 0,859
1,75 0,214 0,239 0,820
2 0,229 0,246 0,79
2,5 0,249 0,258 0,77
3 0,263 0,267 0,766
4 0,281 0,282 0,745

Calculul tensiunilor rezultante:
Observatie:

- in colturile sectiunii existd NUMAI tensiuni normale o . Tensiunile din
coltirile sectiunii

0,=0,+0,-0,= -0,833+47,50-52,5=-5,833 MPa
0,=0,+0,+0,= -0,833+47,50 +52,5=99,167 MPa
0,=0,-0,+0,= -0,833-47,50+52,5= 4,167 MPa

o, =0, —0, —0,=-0,833-47,50 - 52,5 = — 100,833 MPa
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Tensiunile din mijlocul laturilor
- Punctul ®

o, =0, +0, =—0,833+ 47,5 = 46,667 MPa
. =1, 1, =35,682-0,416 = 35,266 MPa

tensiunea echivalenta este:

O s = Os +47. =84,572 MPa

®
Z ‘mj@ 2

Figura 1.20

Punctul ®
Oy =0,+0, = -0,833+52,5=51,667 MPa

T =T,+7, = 45,167+0,832 = 45,999 MPa

tensiunea echivalenta este:

Crens = o.+4t1} =105,513 MPa
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Punctul @
o,=0,—0, =—0,833-47,5=-48,333 MPa

7, =1,+ 1, = 35,682+0,416 = 36,098 MPa

tensiunea echivalenta este:

Copy =+ 02 +412 =86,881 MPa
Punctul

oy =0,—0,, =—0,833-52,5=-53,333 MPa
7y =17,— 7, =45167-0,832=44,335MPa

tensiunea echivalenta este:

Ons =+ OL+472 =103,473 MPa

Analizand tensiunile din cele 8 puncte, rezulta ca tensiunea cea mai
mare este In punctul ® o,, .= 105,513 MPa <o, =120 MPa.
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BARE CURBE PLANE

2.1. Generalitati

Barele curbe sunt bare care au axa curba fie in plan, fie In spatiu.
Exemple clasice de bare curbe plane sunt carligele montate la dispozitivele si
instalatiile de ridicat, piese inelare sau zalele unui lant (figura 2.1).

F F

F

Figura 2.1

Studiul se face tinand cont de urmatoarele conditii:
a) Fortele exterioare actioneaza in planul care contine axa barei;

b) Sectiunea transversala a barei are o axa de simetrie iar planul axei
barei este plan de simetrie pentru bara.

Pe baza raportului dintre grosimea sectiunii transversale ,, h” si raza de
curbura , R” se disting doua tipuri de bare curbe:

a) n cazul in care raportul R/h>5..6 bara are curbura mic3;

b) in cazul in care raportul R/h<5..6 bara are curburi mare.
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Tindnd cont de conditiile mai sus mentionate, se poate afirma faptul ca
deformatia unei bare curbe are un caracter plan, axa barei fiind si dupa
deformare o curba plana.

La calculul barelor curbe, cu sectiune plina, se admite ca urmare a
deformarii modificarea sectiunii transversale este neglijabila.

2.2. Bare curbe plane de curbura mica

Se considera bara curba plana din figura 2.2 asupra careia actioneaza
un set de incarcari exterioare (forte si/sau momente) notate la modul general

cu F, (i:m).

Figura 11.2

Asa cum se cunoaste, ca urmare a actiunii incarcarilor complexe
exterioare coplanare, in orice sectiune transversala se vor dezvolta forte axiale
N, forte taietoare T si momente Incovoietoare M, .

In cazul acestui tip de bare se aplici calculul clasic de rezistents, astfel
incat tensiunile care apar vor fi:

a) tensiunea normala o, data de solicitarea simpla de
tractiune/compresiune:

(2.1)

N
o=—
A

unde A este valoarea sectiunii transversale;

b) tensiunea tangentiala r dezvoltata de forta tdaietoare T calculate cu
relatia lui Juravski:
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T=—"= (2.2)

c) tensiunea normala o, generatda de momentul incovoietor M,,

calculata cu relatia lui Navier:

o=—Y. (2.3)

2.3. Bare curbe plane de curbura mare

In acest caz avem de a face cu bare curbe la care raza de curburi este
mica iar calculul tensiunii normale, datorata incovoierii, se calculeaza cu
relatia lui Winkler (Emile Winkler). Ca si in cazul incovoierii plane pure,
trebuie facute urmatoarele observatii:

Fibra situatda in axa neutra nu-sl modificd lungimea. Axa neutra
imparte sectiunea transversala in doua parti: una in care tensiunea
normala o este pozitiva (apare fenomenul de intindere al fibrelor)
si 0 a doua parte in care tensiunea normald este negativa (apare
fenomenul de compresiune a fibrelor);

In cazul barelor curbe axa neutrd nu coincide cu axa longitudinald
(a centrelor de greutate) si, ca urmare, pozitia axei neuter trebuie
determinata.

Se considera bara curba plana din figura 2.3 la care se fac urmatoarele

notatii:

R, - raza interioara - raza de la centrul de curbura C la fibra
interioara;

R, - raza exterioara - raza de la centrul de curbura C la fibra
exterioara;

R - distanta de la centrul de curbura C la axa centrelor de greutate
G (a.c.g);

r - distanta de la centrul de curbura C la axa neutra (a.n);

p - raza de curbura a fibrei considerate la distanta y fata de axa
neutra;

e - distanta de la axa centrelor de greutate la axa neutral;

y, - distanta de la axa neutral la fibra interioara;
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e y, -distanta de la axa neutral la fibra exterioara.

fibra la distanta y de a
axa neutra (a.n.)

a.c.g.

e
= —

——

€

~
-

4 P
Py |
:e: r : II
S o b S—
[ ! [l
| R : ]
:( |II
I R; E,'
-
! C
!
Figura 2.3

Se considera un segment situate la distanta y fata de axa neutra.

Segmentul, in faza initiala cand nu este aplicat momentul de incovoiere M.,

are o lungine aproximata cu:

ds=p-@.

(2.4)

Alungirea segmentului initial ds, urmare a rotirii si pe baza ipotezei lui

Bernoulli, poate fi aproximata cu relatia:

Ads = y-do

(2.5)
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Considerand relatia geometrica (figura 2.2):

y—'—p:r, (2.6)

si tinand cont ca pentru materialul considerat legea lui Hooke este valabila,
alungirea segmentului de lungime ds considerat initial este, pe baza relatiilor
(2.4), (2.5) si (2.6), egala cu:

g _r—p do (2.7)

Pe baza legii lui Hooke si a relatiei (2.7) tensiunea normal o este:

o=F. o= P90 _pd0 Y (2.8)
p o @ r-y

Trebuie facute o serie de observatii:

e din relatia (2.8) rezulta faptul ca variatia tensiunii normale & in
sectiunea transversal este data de o functie hiperbolica;

e cea mai mare apare in fibrele situate la extremele sectiunii;
e axa neutrd, unde tensiunea este nula (0'20) este pozitionata la
cotele p=r sau y=0.

Determinarea tensiunii normale se face pornind de la relatiile de
echivalenta:

!adA:O;

(2.9)
[oyda=m,,
A

Considerand relatia (2.8) si introducand-o in ambele relatii de
echivalenta (2.9) se obtin noile forme:
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2 P

A

) (2.10)
E@J- (=P) 4a- M,.

Din prima ecuatie din (2.10) se poate calcula pozitia axei neutre:

IudA_ J‘——A 0, (2.11)

rezultand:

r=—— . (2.12)

Integrala de la numitorul relatiei (2.12) are diferite valori, in functie de
forma geometrica a sectiunii transversale.

Din cea de-a doua ecuatie din (2.10) rezulta:

(2.13)

dp _ M
E j (r-
A
Integrala de la numitorul relatiei (2.13) va avea valoarea:

I(r P) qner I——ZrIdA+deA—rA 2rA+RA=Ae. (2.14)
P

A A A

Introducand relatia (2.14) in relatia (2.13) rezulta relatia de legatura:

b L (2.15)
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care combinata cu relatia (2.8) conduce la determinarea tensiunii normale o,

rezultate in urma actiunii momentului de Incovoiere M, :

ai=%(i—1] (2.16)
Ael p
sau
oMy Y (2.17)
Aer—y

Considerand notatiile geometrice, tensiunile din fibrele extreme
(interioara o, si exterioara o, ) pot fi calculate cu relatiile:

> fibra interioara: o, =—"=L (2.18)
Ae R,
» fibra exterioara: o, :—%&. (2.19)
Ae R,

In cazul consideririi si a solicitirii de tractiune compresiune, tensiunea
normal totala o se calculeaza cu relatia:

My (2.20)
Aer—y
Exemplu de calcul

Pentru bara de curbura mare din figura 2.4 se cunosc: raza de curbura
R=130mm, sectiunea barei este circulara de diametru d=80mm si faptul ca

este materialul din care este confectionata are o tensiune admisibila
o, =150 MPa.

Bara este incarcata in punctul @, capatul liber, cu doua forte egale cu F
si 2F . In punctul ® bara este incastrata.

Se cere sa se determine forta capabila F pe care o poate suporta bara
fara a se rupe.

Rezolvare:

Pentru determinarea starii de tensiune este necesar sa se traseze
diagramele de eforturi sectionale axiale N, taietoare T siincovoietoare M,.
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Bara poate fi impartita in doua portiuni distincte: portiunea ® - @ si
portiunea @ - .

Discutia se va face pe fiecare portiune in parte. Daca in cazul barelor
drepte discutia era facuta in raport de distanta x, in cazul barelor curbe
discutia se face in functie de pozitia unghiulara.

NN

Figura 2.4

Intr-un punct oare din cele doud portiuni de bar3, eforturile sectionale
se obtin prin proiectia fortelor, stdnga sau din dreapta sectiunii considerate,
pe directia radiala (r) si tangentiala (t), la punctul considerat (figura 2.4).
Proiectiile fortelor pe directie tangentiala (¢) la bara curba sunt fortele axiale
N iar proiectiile pe directia radiala (r) la bara curba sunt fortele taietoare.

Trebuie specificat faptul ca se pastreaza reguula semnelor.

Portiunea © - @
Se considera un punct @ situat la o deschidere unghiulara oarecare o
fata de orizontala O - @ (OS a £90°) . Prin trasarea celor doua drepte, una in

prelungirea razei R (drectia radiald (r)) si cealalta tangenta la raza R
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(drectia tangentiala (t)) rezulta, geometric, alte doua unghiuri «
(figura 2.3).

Pentru determinarea influentelor pe care le au fortele cu F si 2F in
punctul @, se ,mutd” cele doua forte in acest punct (reprezentarea punctata
din figura) si se fac proiectiile cele doua directii (r) si (t). Ca urmare se vor
obtine:

o forta axiala:

N, ,=-Fsina + 2Fcosa ;
o forta taietoare:
T, ,=—Fcosa —2Fsina ;
Observatie
a) Derivand forta axiala in functie de unghiul & obtinem:

N
@ =—Fcosa —2Fsina=T,_,;
da

b) Derivand forta taietoare in functie de unghiul & obtinem:

dT,
—I2 = Fsina — 2Fcosa =— N__,.
da

Cu alte cuvinte forta axiala este derivata fortei tdietoare si forta
tdietoare este derivata, cu semnul ( - ), a fortei axiale. Ca urmare, unde una din
aceste forte este zero, cealalta va avea o valoare extrema.

Este evident faptul c3d, daca una din forte are semn constant, pozitiv sau
negativ, pe intervalul considerat nu trece prin valoarea zero. Dintre cele doua
forte N, , si T,, numai forta axiald N, , poate fi egala cu zero, ceea ce

inseamna ca, forta tdietoare T, , are o valoare extremd in intervalul
considerat.

Se pune conditia N, , =0, de unde rezulta:
—Fsina + 2Fcosa =0 sau tga = 2.

Ca urmare, unghiul pentru care forta xiala este zero va fi:

a =arctg2 =63°26"5".
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Valorile fortelor axiala si tdietoare in capetele intervalului vor fi:

. a=0" N, =2F;
N, ,=-Fsina + 2Fcosa =
a=90" N,=—F.
a=0" T, =-F;
T, ,=—Fcosa—2Fsina =5 a=6326'5" T =-2,236F;
a=90" T,=-2F.

Pentru calcul momentului Tncovoietor se considera distantele de la
punctul @ la punctul considerat la unghiul « .

Astfel, pentru forta 2F bratul este egal cu distanta dintre punctele © si
®, distanta egala cu d, =R — Rcosa.

Pentru forta F bratul este egal cu distanta dintre punctele @ si ®,
adica d, = Rsina

Ca urmare, momentul in punctul @, dat de fortele din punctul O este:
M, ,(a)=-2Fd, — Fd, =-2F(R—-Rcosa) — FRsina .

Derivand relatia momentului incovoietor in raport cu unghiul a se
obtine:

d[M,_,(a)] ~ d[-2F(R—Rcosa) — FRsina | _r
da da B

(-2Fsina —~Fcosa ) =RT,_,

Rezulta ca derivata momentului Incovoietor este egala cu forta
taietoare inmultita cu o coonstanta (In acest caz raza de curbura R a barei) si
ca urmare se pastreaza proprietatea de la bare drepte: forta tdietoare este
derivata momentului incovoietor.

Deoarece forta taietoare nu este egald cu zero in niciun punct,
momentul incovoietor, in intervalul ® - @ nu are nicio valoare extrema.

Momentul de Incovoiere va fi:
a=0" M, =0;

M, ,(a)=-2F(R—Rcosa)— FRsina =
a=90" M, =-3FR.
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Portiunea @ - ®
Se considera un punct ® situat la o deschidere unghiulara oarecare S

fata de orizontala 0 - @ (OS p 3900) . Prin trasarea celor doua drepte, una in
prelungirea razei R (drectia radiala (r)) si cealalta tangenta laraza R (drectia
tangentiala (t)) rezultd, geometric, alte doua unghiuri g (figura 2.3).

Pentru determinarea influentelor pe care le au fortele cu F si 2F in
punctul ®, se ,muta” cele doua forte in acest punct (reprezentarea punctata
din figura) si se fac proiectiile cele doua directii (r) si (t). Ca urmare se vor
obtine:

o forta axiala

N, ,=—Fcosf —2Fsinf;
e forta tdietoare
T, ,=Fsinf —2Fcosf3;
Asa cum se poate observa, forta axiala N, , este negativa pe tot

intervalul considerat In timp ce, forta taietoare trece de la o valoare negativa,
pentru F=0. Ca urmare, atat forta axiala cat si momentul vor avea valori

extreme.

Pentru determinarea unghiului la care acestea au valori extreme se
pune conditia: T, , = 0, de unde rezulta:

Fsinf —2Fcosff =0 sau tgff = 2.
Ca urmare, unghiul pentru care forta taietoare este zero va fi:
p=arctg2 =6326'5".
Valorile fortelor axiala si taietoare in capetele intervalului vor fi:

IB=0° N2=—F;

N, ,=-Fcosff—2Fsinff =4 f=6326'5" N__ =-2,236F;
p£=90" N,=-2F.

B=0" T, =-2F;

T, ,=Fsinf—2Fcosf =
= {ﬁ:%" T, =F.
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Pentru calcul momentului Incovoietor se considera distantele de la
punctul @ la punctul ®. Astfel, pentru forta 2F bratul este egal cu distanta
dintre punctele @ si @, distantd egala cu d, =R + Rsin 3.

Pentru forta F bratul este egal cu distanta dintre punctele ® si @,
adica d, = Rcosf3.

Ca urmare, momentul in punctul ®, dat de fortele din punctul O este:
M, ,(a)=-2Fd, — Fd, = —2F(R+Rsin 8) — FRcos 3 .

Considerand valorile de capat ale unghiului £ si valoarea de extrem

pentru S =63"26'5" se obtin urmatoarele valori:

p=0"; M, =-3FR;
M, ,(cr)=—2Fd,—Fd,=—2F(R+Rsin 8)—FRcos f={ f =6326'5"; M__=—4,236FR;
B =90"; M,=—4FR.

Pentru trasarea diagramelor se considera axa longitudinalda a barei
curbe si se tine cont de relatiile dependente de functiile trigonometrice sine,
cosa, sinf si cospf.

In figura 2.5 este prezentati diagrama de forte axiale, in figura 2.6

diagrame de forte tdietoare iar In figura 2.7 diagrama de momente
incovoietoare.

Asa cum rezulta din calculele de mai sus, pe portiunea @ - @, pentru un
unghi S =63"26'5" se obtin valori maxime pentru forta axiala
N, .x = —2,236F si pentru monetul incovoietor M, =—4,236FR.

max

Pentru determinarea tensiunii maxime normale o se iau in
considerare ambele solicitari simple, de compresiune si de incovoiere:

a) solicitarea de compresiune - determinarea tensiunii normale maxime de
compresiune O, se face pe baza relatiei clasice:

N
GC — __ max _ _2’23?}7 = — 8'94421;‘ = — 4,44810_4F,
A rd 7-80

4
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o =63°26'82"

B=63°26'82"

Figura 2.5

o =63°26'82"

B=63°26'82"

Figura 2.6
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-3FR -4,236FR

R R T R R R R

B =63°26'82"

Figura 2.7

b) solicitarea de Incovoiere - determinarea tensiunilor rezultate la Incovoiere
se realizeaza pe baza relatiilor lui Winkler. Pentru inceput se determina raza
axei neutre conform relatiei:

relatie pentru sectiunile circulare, in care R este raza de curbura (R=130mm)
iar d este diametrul sectiunii transversale a barei (d=80mm ).

Inlocuind obtinem (figura 2.8):

2
r= %{ 130+, 1307 —% ] =126,846(mm).

Ca urmare, distanta dintre raza de curbura a barei si raza axei neutre
este (figura 2.7):

e =130 — 126,846 = 3,154 (mm)
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Pe baza cotelor geometrice din figura 2.8, rezulta:
y, = g —e=40-3,154 =36,846 (mm)
si

Y, =§+e =40+ 3,154 = 43,154 (mm),

iar razele care sunt situate fibrele sunt:
d 80

e pentru interior: R = R_E =130- o 90 (mm)
: d 80
e pentru exterior: R, = R+§ =130+ - " 170 (mm)

|
i r >
el
i >
I
0
e ;
|
[
l
[ V1 ! V2
: —>
i o [[MIE
l T
| |
| AR o
: Gint |
I
| i
|
I
K& d
>
: Rz - >
| >
Figura 2.8

Aplicand relatia lui Winkler si tindnd cont ca diagrama de momente
este de partea fibrei intinse, obtinem:
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e pentru fibra din interior, situatd la raza R, :

o = Mus s 4236FRy, __ 4236-130-F 36846 _ 14500
eA R, eA R 5 o, 780" 90

e Pentru fibra din exterior, situata la raza R2 :

M B .
o = My, _ 4236FRy, _ 4236130 1«;.43,154 _ 0.00881F .
eA R, eA R, 5 o, 780° 170

Ca urmare, tensiunea maxima datorata incovoiecii este la interior fiind
egala cu:
o, =—0,01422F.

Tinand cont si de tensiunea determinata de solicitarea de compresiune,
se otine o tensiune totala de:

Orotalmax = T + O = — 4,448-10*F - 0,01422F =-0,0137752F.
Punand conditia de rezistenta: ‘ O otal max | < T

obtinem inegalitatea: 0,0137752F <150,

de unde rezulta forta capabila: F <10.889,13 N.
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CALCULUL DEFORMATIILOR
GRINZILOR DREPTE

3.1 Introducere

Un aspect important il constituie calculul deformatiilor acestora,
deformatii care se pot grupa in doua categorii:

e Deformatii/deplasari dupa o directie din spatiu;

e Rotiri in jurul unei directii din spatiu.

Pentru calcul deformatiilor au fost dezvoltate numeroase metode, unele
pur analitice sau grafo-analitice — bazate pe aspectul geometric al deformarii,
altele energetice - bazate pe energia interna de deformatie generate de lucrul
mecanic al incarcarilor exterioare.

Indiferent de metoda adoptata calculul urmareste determinarea formei

deformate a structurilor mecanice precum si valoarea deformarii intr-un
punct oarecare.

Metodele analitice si grafo-analitice, spre deosebire de cele energetice,
au o serie de limitari, care vor fi evidentiate in cele ce urmeaza.

3.2. Metode analitice
3.2.1. Ecuatia fibrei medii deformate

O metoda fundamentala, analitica, de calcul a deformatiilor unei grinzi
drepte este cea de rezolvare a ecuatiei fiberi medii deformate a grinzilor
(barelor) drepte. Pentru aceasta se considera o grinda, prin fibra ei medie,
raportata la un sistem de axe ortogonal xOy (figura 3.1).

Grinda se considera supusa unei solicitari simple de Incovoiere pura-
plana prin actiunea momentelor de Incovoiere M,.
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Originea sistemului de coordonate in reazemul din punctul O. Pentru
calcul se alege o sectiune in punctul @, la o distanti oarecare x de origine. In
punctul considerat, grinda are o deformare caracterizatd de deplasarea
verticala, definita si sub denumirea de sdgeatd, v si de rotirea ¢, ambele fiind

dependente de pozitia punctului considerat ©.

Figura 3.1

Astfel, cele doua deformatii pot fi exprimate de dependentele:
v =v(x) si p=9(x). (3.1)

In sistemul de coordonate prezentat mai sus, sageata se va fi pozitiva
daca este orientatad in jos, iar rotirea se va considera pozitiva daca determina o
rotire in sens orar.

In acelasi timp, in punctul considerat, deformarea grinzii este definita
de o raza de curbura p. Conform celor cunoscute de la matematica, intre

deplasarea verticalda v siraza de curbura p exista relatia de legatura:

S A— (3.2)

Q|+
1
=Y
+
—~
<\
N—
N
| |
N |

unde prin V" s-a notat derivata ordinara de ordinul doi a sagetii in raport cu
distanta x:

2
V)
dx?

. (3.3)
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In ipoteza micilor deformatii, se poate face aproximarea:

1+(v) =1, (3.4)
relatia (3.2) devenind:
2
1.4 "(ZX). (3.5)
p dx

Pornind de la forma deformata a grinzii se considera un al doilea punct
@ situat la o distanta foarte mica (infinitezimald) dx de punctul @ . In punctul
@ are loc o crestere a sagetii cu valoareadyv, valoarea totala fiind v+dv .

In ipoteza micilor deformatii, segmentul de grindi ds intre punctele @
si @ poate fi aproximat cu o linie dreapta de lungime dx.

Ca urmare, in triunghiul cuprins intre punctele @ si @ se poate scrie
relatia trigonometrica:

tgp = —. 3.6
9= (3.6)

si tindnd cont si de ipoteza micilor deformatii se poate face aproximatia:

1

dv
— . 3.7
o (3.7)

Pe baza relatiilor (3.5) si (3.7) se poate scrie egalitatea:

1 _d
p dx*  dx’

(3.8)

Determinarea relatiilor de calcul pentru sageata si rotire porneste de la
egalitatea:

Q|

Mi
)
z
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determinata In calculul relatiei lui Navier, cu observatia cd momentul de
incovoiere este dependent de distanta x, M, =M,(x).

Produsul EI  este definit a fi modul de rigiditate la Incovoiere al

sectiunii transversale omogene. In cazul grinzilor cu sectiune neomogeni
modulul se determina ca suma de module ale fiecarei componente neomogene

n
calculata fata de axa neutra: Z EI,.
i=1

Din relatia (3.9) rezulta c3, in cazul In care atat momentul incovoietor
M, cat si modulul de rigiditate EI, sunt constante pe toatd lungimea grinzii,
raza de curbura este constanta si, ca urmare, deformarea grinzii va fi de forma
unui arc de cerc.

Avandu-se in vedere faptul real ca deformarea data de fortele de taiere
sunt mai mici comparativ cu cele generate de momentul de incovoiere, relatia
(3.9) este considerata si In cazul Incovoierii simple si, ca urmare, relatiile de
calcul determinate in continuare sunt valabile si pentru aceasta forma de
incovoiere.

Prin combinarea relatiilor (3.5) cu (3.9) rezulta egalitatea:
=L (3.10)

Pentru sistemul de axe considerat in figura 3.1, axa Oy are sensul

pozitiv orientat in jos si pentru un moment pozitiv de incovoiere (asa cum este
considerat In figura) se poate observa ca, odata cu cresterea distantei x de la
ponctul O, are loc o micsorare a valorii unghiului de rotire ¢ , de la valoarea

maxima (¢, .. in punctul 0) la valoarea 0, in punctul In care siageata v este
maxima (tangenta la forma deformata a grinzii in punctul de deformare
maxima devine orizontala si unghiul ¢ =0).

Ca urmare, din punct de vedere matematic, functia data de relatia (3.7),
p(x)=V'(x), scade si ¢'(x) =v"(x) <0, aspect care este contrar ecuatiei (3.10).

Pentru a exista corelare intre fenomenul fizic si relatia de calcul (3.10)
se va considera in aceasta semnul negativ:

d*v(x) M,
— L, 3.11
dx® EI (3-11)

Z
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Asa cum se stie, intre eforturile sectionale exista o serie de relatii de
legatura:

d*M(x) dT(x) _
dx* dx

—q(x). (3.12)

Tindnd cont de aceastea si de relatiile (3.11) si (3.7) rezulta
urmatoarele egalitati:

div(x) _ T(x)

3.15
dx’ El (3:15)
4
dvlx) , alx), (3.14)
dx El,

3.2.2. Integrarea analitica a ecuatiei diferentiale a fibrei medii
deformate

Pentru determinarea sagetii si rotirii intr-un punct oarecae, de-a lungul
unei grinzi drepte, pe portiuni de sectiune constanta si care este realizata
dintr-un material cu modulul de elasticitate cunoscu si constant, este necesar
sa se integreze relatiile (3.11), (3.15) si (3.14):

. v [ M,
. : L B 3.15
rotirea o(x) Ix Bl X ( )
e sdgeata: y(x)zv:j(o(x)dx. (3.16)

Prin integrarea relatiilor (3.15) si (3.16) rezulta doua constante de
integrare C, si C,, care se determina din conditiile de legatura si din conditiile
de continuitate ale grinzilor.

Conditiile de legatura se refera la valorile pe care le au deformatiile
si/sau rotirile in dreptul lor, tinand cont de faptul ca legaturile blocheaza
grade de libertate.
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Astfel, In cazul reazemelor, articulatiilor si incastrarilor deplasarile
sunt egale cu zero, iar in cazul incastrarii apare, in plus, rotirea egala cu zero
(figura 3.2).

Conditiile de continuitate ale fibrei medii deformate se refera la faptul
ca grinzile ca urmare a deformarii lor nu se rup. Cu alte cuvinte, fibra este o
curba continud, in punctele in care are loc o modificare fie a sectiunii fie a
incarcarii nu are loc ruperea acestora.

Conditiile care se iau In considerare in calcul se refera la egalitatea
sagetilor si rotirilor, in stanga si in dreapta punctelor in care au loc aceste
modificari (figura 3.3).

Figura 3.2 a) reazem simplu v=0; b) articulatia v=0; c) incastrarea
v=0;0=0

Vid

Grinda deformatd

Figura 3.3
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Pe baza figurii 3.3, conditiile de continuitate pentru punctual @ sunt:

e pentru sageata - sageata din stinga punctului trebuie sa fie egala cu
cea din dreapta punctului

v, =V, (3.17)

e pentru rotire - rotirea din stinga punctului trebuie sa fie egala cu
cea din dreapta punctului

D15 = Prq (3.18)

Pentru rezolvarea problemelor se parcurg urmatoarele etape:

a) dupa determinarea reactiunilor se scrie relatia de calcul a
momentului incovoietor pe fiecare portiune;

b) se scrie pe fiecare portiune se calculeaza, cu relatiile (3.16) sageata
si (3.15) rotirea obtinandu-se, pentru fiecare interval cite doua
constante de integrare;

c) se determina, pe baza conditiilor (3.17) si (3.18), constantele de
integrare.

De notat faptul cd, in cazul in care exista un numar , q” de intervale vor
exista un numar ,2q” de constante de integrare. Pentru determinarea
constantelor va rezulta un system de ecuatii algebrice format din , 2q ” ecuatii.

Aceasta metoda analitica aproximativa, a fibrei medii deformate, poate

fi aplicata in cazul calculului deplasarilor si rotirilor elastice grinzilor drepte,
pe portiuni cu caracteristici mecanice si geometrice constante.

Avand 1n vedere existenta pe fiecare zonda a doud constante de
integrare este de preferat ca sa fie aplicata pentru grinzi cu incarcare simpa si
cu putine zone.

Aplicatia 3.1.

Grinda dreapta Incastrata la un capat si libera la celalalt, incarcata cu o
forta concentrata F. Se considera grinda cu modul de rigiditate constant si de
lungime L (Figure 3.4).

Rezolvare:

Momentul de incovoiere la o distanta oarecare x, de incastrarea din
punctual @, este dat de relatia:
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M, =—F(L-x).

VmaX

Figura 3.4

Conform relatiilor (3.15) si (3.16) avem:

M, 1 F x*
=|-=Ltdx=—|F(L-x)dx=—-| Lx—— |+C
(/)(X)IEIZX EI, (L-x)dx EI(X zj '

zZ

EI 2

z

2 2 3
v(x)= {F(Lx—x?}rCl}dx:i(Lx——%J+C1X+Cz.

Asa cum rezulta din relatiile de integrre se obtin doua constante C, si
C, care se calculeaza tinand cont de conditiile din incastrare. Astfel, in

¢x:0 = O‘
v._, =0.

punctual ® avem:

iar din calcule rezulta:
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Introducand constantele C, si C, in relatiile de calcul ale sagetii si
rotirii, valorile maxime ale deformatiilor vor fi calculate pentru x=L:

J— J— FLZ ]

Pr= P = 2EI’

- FI .
b 3EIL

Observatie:

e pentru un punct situat intre @ si @ sdgeata si rotirea se obtin
introducand valoarea distantei x , considerata din punctual ©.

Aplicatia 3.2.

Grinda dreapta Incastrata la un capat si libera la celalalt, incarcata cu o
forta distribuita de intensitate ¢. Se considera grinda cu modul de rigiditate

constant si de lungime L (figura 3.5).

M( YYYYYYYYY B
¥ £

Figura 3.5

Rezolvare:
Momentul incovoietor M,,la o distanta x fatd de punctual A4, este:

2 2 2

q;( qL q}( q 2 2
M=-M,+Yx—=—"—+¢qglx——=—=(L"-2Lx+x" ).
a 4 4 2 2 1 2 2( )

Conform relatiilor (3.15) si (3.16) avem:
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2 3
(EB-2Lx+x? Jdx = 1| Px - L
T ° 2151 2 3

2EI

3 2 3 4
V(X)Zj 4|y e X +C, dx:i pX XX +C.x+C,.
2EI, 3 2EI, 2 3 12

Originea sistemului de referintd, In cazul acesta, este considerata in
punctul A, iar conditiile de legatura sunt:

¢x:0 = O’
V., =0.
Pe baza relatiilor de mai sus, avem:
C,=0;
C,=0.

Introducand constantele C, si C, in relatiile de calcul ale sagetii si
rotirii rezulta:

_ _qL
¢B ¢X:L 6EIZ )
_ qL’
Bl gl

Aplicatia 3.3

Grinda dreapta articulata la un capat (in punctul A) si rezemata la
celdlat capat (in punctul B), Incdrcata cu o forta distribuita de intensitate q.

Se considera grinda cu modul de rigiditate constant si de lungime L
(figura 3.6).

Rezolvare:
Momentul de incovoiere M, , la o distanta oarecare x fata de punctul
A (originea sistemului de referinta) este:
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2 2
M, =yx - B _ax_ax
2 2 2

X

/CI

Y4

Figura 3.6

Conform relatiilor (3.15) si (3.16) avem:

g0=J’ 1 [qlx qx dx=i _qu qx +C,.
El { 2 2 El 4 6

N Y PR YA Y
EI, 4 6 EI, 12 24

Deplasarile pe verticala in legaturile A si B sunt egale cu zero:

Pe baza conditiilor de legatura rezulta:

C,=0;
4 4 3

Lo L +C,L=0= C, = L’
12 24 24E]
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Introducand constantele C; si C, in relatiile de calcul ale rotirii si
deplasarii se obtin relatiile:

2 3 3
1 L_qu L }L qL

B\ a4 6 ) 24
3 4 3

vx=i _abx ax ) Gk
El\ 12 24 ) 24EL

Valoarea maxima a deformatiei are loc la jumatatea deschiderii grinzii,

pentru x=—. Inlocuind aceasta valoare in relatia de calcul a sagetii rezulta:

2
4
S L
" 384El

unde rotirea este egala cu zero.

Rotirea este maxima in legituri A si B, pentru x=0 sau x=L. Valorile
acestora sunt aceleasi, dar de semen contrare ¢,=-¢,. Introducand una din
aceste valori In relatia de calcul a rotirii se obtine:

qr’
(‘N Py 24El .

Aplicatia 3.4

Grinda dreapta articulata la un capat (in punctual @) si rezemata la celalat
capat (in punctual @), incarcata cu o forta concentrata de intensitate F, la
mijlocul deschiderii ei. Se considera grinda cu modul de rigiditate constant si
de lungime L (figura 3.7).

Rezolvare:

Asa cum se poate observa, grinda este divizata in doua regiuni: O - @ si
@ - @. Ca urmare, analiza se va face pe fiecare pritiune in parte. Momentul de
incovoiere intre punctele @ si @, la o distanta oarecare x este:
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Fx
M =—

ix,(1-2) 2

L/2 F X

0 V@
N
TN~ v e
x >S4 -
L
Figura 3.7

Conform relatiilor (3.15) si (3.16) avem:

Pe intervalul @ - ®, momentul de incovoiere este:

be(2_3):i £+x —FX:E—B:E £—x .
’ 2\ 2 4 2 2\2

Pe baza relatiilor (3.15) si (3.16) rezulta:

J‘ 1 F( L 1 ( FLx Fx*
@, = ———=| =—x |[dx=——+| ———— |+(;,
EI 2\ 2 EIL| 4 4
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Asa cum se poate observa, rezzultd un numar de patru constante de
integrare C,, C,, C, si C,. Valorie acestor constante se obtin punand conditiile
de legatura sl continuitate

Conditiile de legatura se rfera la legaturile grinzii din punctele © si ®.
In aceste puncte grinda este rezemata si ca urmare deplasarile sunt nule, Din
relatiile de calcul ale deplasarilor v(x), pentru fiecare portiune in parte,

rezulta:
Vi =V(1 gm0 =C,=0.
2 3 3
V=V L=—i L b +C3£+C4=—£+C3£+C4=0.
(-3)x=2  2EI\2 4 8-6 2 48E1 "2

Conditiile de continuitate se refera la faptul ca In punctul @ grinda nu
se rupe. Ca urmare atat rotirea cat si deplasarea punctului @ au aceasi valoare
in stanga (stg.) si dreapta (dr.) acestui punct:

vZ,stg :v2,dr & v N _L :V(2_3),X:0 & . 1 F L3 L _
o RTINS
§02,stg :(DZ,dr & ¢ L :(/’(2,3),)(:0 & 1 F LZ

Ca urmare, rezulta un system cu patru ecuatii si patru necunoscute,
constantele de integrare C,, C,, C; si C,:

C,=0;

3
_ L +C3£+C4=O;
48EI 2

3
LR L,
EIl_ 96 '2

2
NS
EI 16
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Sistemul are solutiile:

2 3
c=tE | c=c,-0,si ¢=".
16EI 48EI

Pentru determinarea sagetii in punctul @ se considera fie relatia de
calcul a sdgetii pentru intervalul ® - @ pentru o valoare x=L/2, fie relatia de

calcul a sagetii pentru intervalul @ - ® pentru o valoare x=0.
Rotirile sunt maxime in punctele ® si ®. Pentru determinarea rotirii in

punctual @ se considera fie relatia de calcul a rotirii in intervalul ® - @
pentru o valoare x=0, fie relatia de calcul a rotirii in intervalul @ - @ pentru o

valoare x=L/2. Rotirea in punctul @ este nulj, indifferent de intervalul
considerat.

Aplicatia 3.5

Grinda dreapta articulata la un capat (in punctual @) si rezemata la celalat
capat (in punctual ®), incarcati cu o fortd concentratd de intensitate F, la o
distnta a fata de punctul @. Se considerda grinda cu modul de rigiditate
constant si de lungime L (figura 3.8).

F
o) Yo €
%///%;""“‘---——-——Kz---x——"V‘///%'//g
Y Y3
a b

Figura 3.7

Rezolvare:

Asa cum se poate observa, grinda este divizata in doua regiuni: O - @ si
@ - @. Caurmare, analiza se va face pe fiecare pritiune in parte.

Reactiunile sunt:
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Momentul de incovoiere intre punctele @ si @, la o distanta oarecare X

este:
Fbx
Mlx,(172) = le = T '
Conform relatiilor (3.15) si (3.16) avem:
1 Fbx 1 Fbx*
Q= |- X = — 1
EI, L EI, 2L
2 3
v, :J. _ L Fbx +C, |dx :—LFbX +C,x+C,.
El, 2L EI, 6L
Momentul de incovoiere intre punctele @ si @, la o distanta oarecare X
este:

M.
X,

os=1 (a+x)-Fx = FTb(a+x) — Fx.

Conform relatiilor (3.15) si (3.16) rezulta:

1| Fb 1 |Fb x*) Fx°
=|-—| —(a+x)-Fx |dx=——| —| ax+— | — |+C
Vs I EIZ{L( ) } EIZ[L( 2] 2} :

1| Fb x>\ Fx* 1 | Fb( ax* x*) Fx®
V273: _ —axX+— | —— +C1 dX == — — | —— +C3X+C4
El| L 2) 2 E| L\ 2 6) 6

3.3. Metode grafo-analitice de calcul a deformatiilor la
solicitarea simpla de incovoiere

Metodele grafo-analitice, asa cum sugereaza si denumirea, combina
calculul analitic cu aspectul grafic al diagramelor de incovoiere.
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3.3.1. Metoda grinzilor fictive

Fundamentarea metodei si etapele de lucru sunt prezentate in cele ce
urmeazd. Metoda se numeste grafo-analitica deoarece Imbina reprezentarea
grafica a diagramei de momente Incovoietoare datorate Incarcarii reale cu o
componenta analiticd reprezentata de ecuatia diferentialda a fibrei medii
deformate.

Aceasta metoda are la baza asemdnarea care exista Intre relatiile
diferentiale ale eforturilor sectionale si relatiile diferentiale ale deplasarilor
(3.12):

M, _ T )
dx*  dx P
si (3.11) din care se obtine:
2
M= p ) gy 90 (3.19)
dx dx

Pentru determinarea deformatiilor grinda reald se transforma intr-o
xgrindd fictiva” construita din cea reala pe baza regulilor prezentate in
tabelul 3.1

In orice regiune poate fi scrisa relatia de calcul:

oy = AELp) _ d*(ELv) .

3.20
: dx dx* ( )

Ca urmare a incarcarilor exterioare grinda este solicitat la incovoiere.
Diagrama de momente incovoietoare se transforma intr-o forta distribuita,
denimita fortd fictiva:

p*=M,

1

(3.21)

Sensul de actionare al fortei fictive este urmatorul: pentru diagrama
situata sub grinda fictiva sensul fortei este Indreptat in jos iar pentru cele
situate deasupra sensul de actiune este in sus.
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Tabelul 3.1
Nr.crt. Grinda reala Grinda fictiva
1. Reazem de i | Reazem de |
margine J margine J
2. Reazem Articulatie .
intermediar % intermediara —o—
3. Articulatia | Reazem :
intermediara o intermediar ; ; ‘
4. Incastrare é ‘ Capat liber
5. | Capatliber Incastrare % |

Ca urmare a actiunii fortei fictive p* in grinda fictiva apar, identic cu
cazul grinzilor reale, reactiuni fictive, forte taietoare fictive T* si momente

- . 0 * - A = ~ ~ A -
Incovoietoare fictive M, . Tinand cont de relatiile de legatura intre eforturile

sectionale din cazul grinzilor reale, pot fi scrise si in cazul grinzilor fictive
relatiile:

_dT*  d*M;
dx dx*

*

(3.22)

Tinand cont de relatiile (3.20) si (3.21) rezulta ecuatia diferentiala:

d*(Elv) d*M, dT*

3.23
dx*® dx* dx (3.23)
Din relatia (3.23), prin integrare succesiva rezulta:
dELY) _dM, | o _eyc, (3.24)

dx dx
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Elv=M +Cxx +C,, (3.25)

unde C, si C, sunt constante de integrare.

Din relatiile (3.24) si (3.25) rezulta relatiile de calcul ale rotirilor si
sagetilor:

T* (,
S 3.26
YZE T E (3.26)
oM Cx+Gy (3.27)
El,  EI

Relatia diferentiala aproximativa a fibrei medii deformate (3.20) si
relatiile (3.26) si (3.27) reprezinta niste familii de curbe iar C; si C, sunt
constante care se determina pe baza conditiilor de legatura si de continuitate
pentru fibra medie deformata.

Astfel, se alege din familia de curbe o anumita curba, care corespunde
unor valori particulare pentru constantele de integrare C, si C,. Acest

procedeu a fost folosit si la integrarea analiticiA a ecuatiei diferentiale
aproximative la care, prin determinarea constantelor de integrare s-a
determinat chiar curba care sa corespunda cu fibra medie deformata.

Metoda grinzii fictive se bazeaza pe faptul ca exista o curba, in familia
de curbe amintite mai sus, care sa exprime deformata, cu respectarea conditiei
C, =C,.

Pentru ca relatiile (3.26) si 3.27) sa respecte fenomenul fizic, grinda
fictiva este astfel aleasa incat sa fie satisfacute toate conditiile de legatura si
continuitate ale fibrei medii deformate. Acest lucru este posibil daca
constantele de integrare sunt egale cu zero si ca urmare relatiile (3.26) si
(3.27) devin:

b3
(ng—l, (3.28)
v=?—1f. (3.29)
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Observatie !

In cazul unor incirciri reale complexe, diagramele trebuie descompuse
in diagrame mai simple (figuri geometrice simple) pentru care aria si pozitia
centrului de greutate sunt cunoscute fiind suprapuse efectele acestora.

Spre exemplu, in cazul fortelor distribuite apar suprafete delimitate de
parabole (figura 3.8), calculul ariilor si a pozitiilor centrelor de greutate fiind
calculate cu relatiile:

A=2bh; A=Lbh
3 3

0,625b

Parabola
tangenta
. (;2 la orizontala

0,25b

b

Figura 3.8

Aplicatia 3.6
Etapele de calcul se prezinta considerand o grinda asezata pe doua reazeme

A si B si care are o consold B - @ pe care este o forta distribuitd, constanta
de intensitate q (figura 3.9).

Rezolvare:

e etapa 1 - se considera grinda realda, pentru care se traseaza, cu
metodologia  cunoscuta, diagrama de momente Incovoietoare
(figura 3.9);

e etapa 2 - pe baza tabelului 3.1 se traseaza grinda fictiva (figura 3.9);
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A
MN%% L
Yy p*
Al .
Ny : /
Y, E o
7 7.
Figura 3.9

e etapa 3 - se incarca grinda fictiva (conjugatad) cu incarcarea fictiva data de
relatia (3.28):

p*=M,
astfel incat daca momentul de incovoiere este pozitiv, M; >0, forta fictiva
p* sa fie Indreptata in sensul pozitiv al axei y, iar daca momentul e incovoiere
este negativ, M; <0, forta fictiva p*sa fie indreptata in sensul negativ al axei
V.

e etapa 4 - se determina reactiunile din elementele de legatura ale grinzii
conjugate;

Se determina reactiunea fictiva din A calculand momentul fictiv in punctul B:

pa’l
12

2
M, =YA1+% %é=0, de unde rezulti Y, = —

*
e etapa 5 - se determina variatia eforturile conjugate T* si M, de pe grinda
conjugata si cu ajutorul relatiilor (3.28) si (3.29) se determina rotirea si
sageata in punctele dorite.

* 2
a. rotirea din punctul A va fi: Q= L _ Y _pa’l
El, EI, 12EI,
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b. pentru determinarea sagetii in punctul @ trebuie calculat momentul
fictiv din punctul respectiv:

2 2 2
M =Py L), aPaT3a_Pa g g
12 2 3 32 4 24

* 2

ca urmare, sageata este: v, = % = ZZ 2’1 (41+3a)

z

Aplicatia 3.7

Se considera grinda Incastrata la un capat sl libera la celalalt incarcata cu forta
distribuita constanta de intensitate q (Figura 3.10). Se cere sa se calculeze
rotirea si sageata din punctul ©.

%wwwwwwumﬁwww@

L

qL?/2

Forta fictivd

Grinda fictivd

Figura 3.10

Raspuns:

Pentru determinarea rotirii sl a sagetii trebuie sa se calculeze forta taietoare
fictiva sl momentul de incovoiere fictive din punctual @.

Forta taietoare fictiva din punctul O® va fi egala cu aria diagramei de moment
de incovoiere al incarcarii reale (figura 3.10):

2 3
p_Lal _ab

32 6

)
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iar momentul fictive este:

2 4
M:1:1L£3_L :ﬂ
3 2 4 8

)

de unde rezulta:

T, gql®
@4 :_1:CI_;
El 6EI]
M;1 qL4
vV, =——=—.
ElI 8EI

Metoda grinzii fictive a fost dedusa pentru o grinda de sectiune
constanta putand fi extinsa si la calculul deplasarilor grinzilor cu sectiune
variabila in trepte.

Aplicatia 3.8
Se considera grinda din figura 3.11, rezemata in punctele A si B si Incarcata
cuo forta F la distanta a fata de reazemul din punctul A.

Raspuns:
Grinda fictiva ramane identica cu cea reala. Se traseaza diagrama de momente
sl se transforma in forta distribuita.

F
A O B
4 a b B

L

Grinda fictivd

Figura 3.11
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REZISTENTA MATERIALELOR

Reactiunile fictive sunt:
- din suma de momente fata de punctul B egala cu zero:

11 Fab b+L _ Fab(L+Db)
L2 L 3 6L

*

Y,

din suma de momente fata de punctul A egala cu zero:

- llLFab a+L  Fab(L+a)
L2 L 3 6L

Rotirile in cele doud reazeme A si B vor vor fi calculate cu ajutorul
fortelor taietoare fictive din cele doua reazeme, practice cu reactiunile fictive

din A si B:

T, Y, Fab(L+b)

YaF "B 6LEL

T, Y, _Fab(L+a)
6LEI,

4 z

Pentru determinarea sagetii in punctul ©® se consindera momentul

fictiv din acest punct, rezultand

. Fab(L+b) 1 Faba Fa’b*
M, =—""Zg--a——=
6L 2 L 3 3L

)

de unde rezulta:
M, _Fa’b’
Y EI, 3LEI’
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3.3.2. Ecuatia celor doua rotiri si ecuatia celor doua sageti

Se considera grinda din figura 3.12 incdrcata cu o serie de forte si
momente exterioare. Se izoleaza o protiune @ - @ care are lungimea [, si cu

modul de rigiditate constant EI, = const.

El,

F| /  F 1
Lo/ o't wyidtl]
|

A
BNILEL ¥ ,
~F Y
ol
‘_ Tl . d, Grinda fictiva
M4\ »M',
\| /
G| | _—M=p*
|
A,
Figura 3.12

Se considera grinda fictiva corespunzatoare lungimii /,, considerate, cu

diagrame de momente Incovoietoare corespunzatoare acetei portiuni.
Suprafata cuprinsa intre cele doua puncte analizate are varia 4,, si momentul

static, calculat fata de punctul @ egal cu:

S, =4,4d,. (3.30)
Pe portiunea @ - @ se scriu ecuatiile de echilibru:
T, —A,-T, =0,
din care rezulta:
T —A,=T, (3.31)
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din care rezulta:
M; +T/l,-A,d,—M,=0 (3.32)

Impartind relatiile (3.31) si (3.32) cu modul de rigiditate constant EI,
se obtin:

T_l - ﬁ = i (3.33)
EI, EI, EI,

My T, S, _ M (3.34)
EI, EI, EI, El

sau tinand cont de cele stabilite in cazul metodei grinzilor fictive:
AIZ
-—==0,, 3.35
21 EI 2 ( )
v, + @l —h:v. (3.36)
1 1712 EI 2

z

Relatiile (3.35) sl (3.36) reprezinta ecuatia celor doua rotiri, respective
ecuatia celor doua sageti. Pe baza acestora pot fi determinate deplasarile unei
sectiuni cunoscand deplasarile dintr-o alta sectiune a grinzii.

Aplicatia 3.9

Se considera grinda din figura 3.13 solicitata de o forta concentrata ga la
jumatatea deschiderii si o forta distribuitd, de intensitate g disitributa pe
toata deschiderea sa.

Rezolvare:
Aplicand ecuatia celor doua rotiri pe intervalul A - @, rezulta:

— AIZ
D, =@y EI
A
sau: 0=¢q, ——12
2 El
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qa

0,5qa? 0,5qa?
Figura 3.13

si inlocuind avem:

1 (lpa3+zpa3 J_ 7 pa’

PE0 T g 22 T3 2 )T 12EL

Aplicand ecuatia celor doua rotiri pe intervalul @ - B, rezulta:

v1+¢1llz—%= v, sau 0=v, +0—%

z z

si inlocuind obtinem:

VvV, =
g

3 3 4
Lflpa2, 2pa> |_3pa
223 328 8EI,

3.3.3. Ecuatia celor trei sageti (Ecuatia lui Clapeyron)

Se considera grinda din figura3.14, cu sectiune variabila in trepte,
incarcata in reazemul din punctul B cu un moment incovoietor si forte
tdietoare concentrate F, si distribuite q, rezultdnd o stare simpla plana de

incovoiere.
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F; A s F.
‘WV l M;
N XI V: 11® I ViM
O B
Lo
M, M, | M
J\H\J\]

1

¥

Cl D *2 CM*Z M 3>
Tv*l // 7‘*2 : T*3
M;
3 M;
‘i’L;L M: M; [ d
Al A2 ' -3
Figura 3.14

Dupa trasarea diagramei de momente de Incovoiere, aceasta se
transforma in forta fictiva distribuitd p*. Pe grinda se considerda doua zone
delimitate de punctele @, @ si @, care au lungimile [, si I, si momentele de
inertie axiale constante pe intervale I, si [, .

Diagramele de incovoiere si implicit fortele fictive distribuite se descompun in
doua triunghiuri corespunzatoare momentelor incovoietoare M,, M, si M, si

respectiv doua suprafete de arii A4, si 4,, corespunzatoare sarcinilor aplicate
pe aceste doua regiuni.

Pentru cele doua portiuni O - @ si @ - @ se scriu ecuatiile de echilibru:
> M =0; Mj+S,+T,1,-M,=0; (3.37)
> M, =0; M;+T/l,-S,,—M;=0, (3.38)

unde S,, reprezintd momentul static al suprafetei sarcinii fictive aplicata in
portiunea © - @ in raport cu sectiunea @ , iar S,; reprezinta momentul static
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al suprafetei sarcinii fictive aplicata in portiunea @ - ® 1n raport cu sectiunea

Q.

Impartind ecuatia de echilibru (3.37) cu cantitatea EL I, si ecuatia de
echilibru (3.38) cu cantitatea EI,l, rezulta:

T_l*_ M;_M; 512

= — , (3.39)
EI, ELIl  ELL
T _ MM, Sy (3.40)
El, ELL ELL
si tinand cont de relatiile stabilite la metoda grinzilor fictive, rezulta:
Vv,V S,
=+ 12, 3.41
P, L ELL (3.41)
V=V, Sy
=<4 2 3.42
?, L ELL ( )
Din egalarea relatiilor (3.41) si (3.42) se obtine:
VooV S _Ys7V, Sy3
L, ELL L ELL
sau VoV VaVs Sy Sas (343)
L L ELL, ELL

Cosiderand notatiile din figura 3.14 momentele statice din relatia
(3.43) sunt egale cu:

M111l_1+M211ﬂ.

3 2 3
+M212%+M3121_2.
2 3 2 3

S,=4d, +
(3.44)
532 = A2d3
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Introducand relatiile (3.44) in relatia (3.43) rezulta ecuatia celor trei
sdgeti (ecuatia lui Clapeyron):

6E( 2V, Vo _"3] M, ZM{I—1 + I—Zj ML 6( Ad, | Ad, j(3-45)
11 12 Il 1 2 [2 11]1 1212

In cazul in care bara este constantd pe toat lungimea sa (EI, =EI, =EI ),
ecuatia (3.45) devine:

6E( Va7Vi , Va7V j =M1, +2M, (1, +1, )+ M,1, + 6(A1—dl+A2d3
I, L L

J (3.46)

2

Aplicatia 3.10
Se considera grinda din figura 3.15 cu o sectiune variabila si simplu rezemata

la capete. Grinda este solicitata cu o forta F mijlocul deschiderii ei. Se cere sa
se calculeze sageata In punctul C.

s

Figura 3. 15

Rezolvare:
Ecuatia celor trei sageti (3.46) scrisa pentru prezenta problema are forma:

6E| YeVa, YTV =M,0,51+2M, L+L +M,0,5]
0,5/  0,5! 21, 21,

unde:
{vl =0; v;=0;

M,=0; M.=Fl/4; M,=0
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Inlocuind valorile de mai sus in ecuatia celor trei sageti, se obtine:

6E VC +V_C :251 L_FL
050 051) 4l 21, 2,

FP° I,+1
de unde rezulta: v, = LR
96E 1,1,
: FP’
Pentru I, =I,=I se obtine: v, =
48E]

3.3.4. Principiul suprapunerii de efecte

Principiul suprapunerii de efecte se bazeaza pe faptul ca tensiunea
rezultanta Intr-un system supus la actiunea mai multor incarcari externe este
egald cu suma tensiunilor care apar daca s-ar aplica separat multor incarcarile
externe. Principiul poate fi utilizat pentru calculul deformatiilor grinzilor
aflate sub actiunea unor incarcari complexe.

Deformarea totala, sageata si/sau rotire, este egala cu suma acestora ca
sl cnd acestea s-ar aplica individual iar valorile se deformatiilor se aduna sau
se scad.

Aplicatia 3.11

Se considera grinda din figura 3.16 incacata in punctual B cu o forta
concentratd F sl o fortd distribuiti de intesitate q=F/L. Se cere sa se
determine rotirea sl sageata in punctul B.

Raspuns:

Incarcarea totala se imparte in doua Incarcari simple (doua stari de incarcare)
(Figura 3.16,a si b).

4

L
e pentru cazul 1 de incarcare (figura 3.16,a), sageata este vl’a:;?, iar
rotirea este = qL ;
Pra= 6Bl
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q=F/L F
vy A
X El,
L
q
VYV
F
Yo
Figura 3.16

3
e pentru cazul 2 de incarcare (figura 3.16,b), sdgeata este v, , :3?, lar rotirea

z

este = FL-
YT
4 3
Combinand valorile, rezulta: v, =v, +v,, = gL + FL
‘ © 8EI, 3EI,
o o = ql’  FL’
P =Prat Pryp 6EI  2EI
11FL
Vv, = ;
. F 5 24E1,
pentru cazul particular g=— rezulta:
L _2FL
& 3EI,

3.3.5. Deformatia grinzilor solicitate la incovoiere oblica sau
stramba

In cazul incovoierii oblice sau strambe momentul incovoietor este un
vector orientat de-a lungul axei centrale dar nu si dupa axele principale de
inertie (figura 3.17).
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Axa
neutrd

Figura 3.17

Momentul Incovoietor M, se poate descompune dupa axele principale
de inertie: M,, si M, .

Considerand ca momentul de Incovoiere M, face un un,ghi o cu axa
Oz (figura 3.17), proiectiile momentului de incovoiere au expresiile:

M, =M, cosa;
g (3.47)

M, = M,;sinc.

Plecand de la considerentul ca fibra medie deformata in cazul
incovoierii oblice este plana si planul fibrei medii deformate este
perpendicular pe planul neutru, pe baza ecuatiei fibrei medii deformate avem:

dv 1 —[yMiZ-I-IZyMiy
2 o 2 ;
dx E IZIy —Izy
dw 1 —IZMiy+IZyMI.Z
2 o 2
dx E IZIy —Izy

(3.48)
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METODE ENERGETICE DE
CALCUL A
DEFORMATIILOR
GRINZILOR DREPTE

4.1. Energia potentiala de deformatie. Teorema lui
Clapeyron

Se considera un corp solid deformabil oarecare asupra caruia se aplica
un sistem de forte si cupluri. Fortele si cuplurile dau un lucru mecanic denumit
lucru mecanic exterior L.

Calculele se realizeaza pe baza urmatoarelor ipoteze:
e materialul este considerat elastic, omogen si izotrop;

e Incarcarea este pana la limita de elasticitate, aviand o comportare
perfect elastica fiind valabila legea lui Hooke;

e aplicarea fortelor si momentelor exterioare se face static;

e sunt neglijate pierderile de lucru mecanic datorate variatiilor
detemperaturd, frecarilor interne din material si a frecarilor din
elementelor de legatura (reazeme, articulatii, incastrari).

In cazul in care, fortele si cuplurile se aplica static, iar materialul din
care este realizat corpul este liniar-elastic, atunci lucrul mecanic exterior este
dat de relatia:

LZZ%*Z%} (4.1)

unde F, si C, reprezinta fortele si cuplurile exterioare care actioneaza asupra
corpului iar v, si ¢, reprezinta proiectia sagetii si a rotirii pe directia fortei,

respectiv a cuplului.
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Ca urmare a actiunii fortelor si cuplurilor in interiorul corpului apar
tensiuni normale o si tangentiale 7 deformarea sa ducand la Inmagazinarea
unei energii potentiale denumita energie de deformatie sau lucru mecanic
interior U.

Teorema lui Clapeyron - pentru un corp solid aflat in repaus, lucrul mecanic al
fortelor exterioare este egal cu energia de deformatie acumulatd.

Energia de deformatie inmagazinata in corp poate fi calculata, in functie
de tensiunile normale o sitangentiale 7, cu relatia:

=Ia—ng+_[1dV. (4.2)
74 2 v 2

Tindnd cont de legea lui Hooke, scrisa pentru cele doua tensiuni:

=F¢;
{G s (4.3)
t=Gy,

si inlocuind aceste relatii in (4.2) rezulta:

U= J' T qv+ —dV. (4.4)

Considerand o bari dreaptd, de lungime [ pentru diferitele solicitari
simple rezulta urmatoarele relatii de calcul:

a) Solicitarea de tractiune/compresiune

. < N .. . . . <
Tensiunea normala este G=Z si inlocuind-o In relatia (4.4) rezulta:

2
U= J-—dV ” 2dAdx=IN dx . (4.5)
2 2EA ) 24

b) Solicitarea de forfecare pura

. - T .. . . . <
Tensiunea tangentiala este TZZ si Inlocuind-o in relatia (4.4) rezulta:
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2 2 2
U=ILdV=jI Tszdx=IT dx. (4.6)
J2¢" ")) 26a ) 264

Pentru un calcul mai exact se poate folosi relatia lui Juravski rezultand:

=

unde coeficientul & depinde de forma tensiunii transversale. Astfel, pentru
sectiunea dreptunghiulara «=1,2, iar pentru sectiunea circulara ¢=1,185.

2 2
15, dAdx = ja r dx, (4.7)
b, 1 2GA

¢) Solicitarea de torsiune

. . 1x M,r
Tensiunea tangentiald este 7=

si Inlocuind-o in relatia (4.4) rezulta:
p

2 5 2
U:”i Mr dAdx:jM—tzdxjrsz:th dv;  (48)

26| 1 261 261

1A P ! P ! g

d) Solicitarea de incovoiere

: < y o e M, :
Tensiunea normala este calculata cu relatia lui Navier fiind G:I—' y si
z

inlocuind-o in relatia (4.4) rezulta:

2 2 2
U:”i My dAdx:J‘—M"deJ‘yszsz"
)26 1, ) 21 ™) ) 261,

Pe baza relatiilor (4.5) + (4.9) energia de deformatie totald, pentru o
solicitare compusa, este data de relatia:

2 2 2
U= ZJAZILA dx + Zja;adx + ijﬂg;p dx + ZJ‘

Conform relatiei (4.10) rezulta ca, pentru fiecare solicitare simpl3,
energia de deformatie poate fi calculata dupa formula:

dx. (4.9)

i dx (4.10)

M
2E1

2
z
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. 2 .
( efort sectional )" - lungime
U= — (4.11)
2-modulul de rigiditate

Modulele de rigiditate pentru cele patru solicitari simple sunt:

Solicitare intindere/compresiune | forfecare | torsiune | incovoiere
Modul de EA GA Gl, El,
rigiditate

Comparand valorile energie de deformatie pentru fiecare forma de
solicitare simpla se poate specifica faptul c3, in cazul solicitarilor de incovoiere
si de torsiune acestea sunt mai mari comparativ cu solicitarile simple de
tractiune/compresiune si forfecare. Ca urmare, in aplicatii se pot considera
numai solicitarile de incovoiere si torsiune. De remarcat este faptul c3, in cazul
aplicatiilor programelor specializate de calcul sunt considerate toate cele
patru solicitari.

Exemplul 4.1

Se considera o bara dreapta de lungime [ si sectiune patrata de latura
,a” asupra careia actioneaza o forta axiala egalda cu F si o forta tdietoare de
aceeasi valoare F (figura4.1). Se cere sa se calculeze energiile de deformatie
pentru fiecare caz in parte si sa se determine raportul dintre acestea. Se va
considera ca lungimea barei este [=10a iar coeficientul a=1,2.

Y

Figura 4.1

Rezolvare:
Eforturile sectionale intr-o sectiune oarecare sunt N=F, T=F si M,=—Fx.
Expresiile energiilor de deformatie sunt:

a) Energia de deformatie rezultata din solicitarea de tractiune este:
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_ N1 _F’10a _5F°
2EA  2Ed®  Ea

U

1

b) Energia de deformatie rezultata din solicitarea de forfecare este:

. Tl 1,2F*10a _ 6F’
2GA 2Ga* Ga

U, =

)

c) Energia de deformatie rezultata din solicitarea de incovoiere este:

¢ M 1 , F* x| FP  F?1000a° 2000F>
U, = I—’ dx=—j(—Fx) dx = —| = = — = :
2El  2EI 2EI, 3| 2EI a Ea
’ e | BT

Considerand relatia de legatura dintre modulele de elasticitate:
E=2,6G rezulta urmatoarele rapoarte:

2 2
ﬂzm.ii=400; Us _ 2000F .2'6E2“ = 866,6.
U~ Ea 5F U, Ea 6F

Asa cum rezultd si din rapoartele de mai sus, influenta solicitarii de
incovoiere (si, in particular, si a solicitarii de torsiune) este mult mai mare
comparativ cu solicitarile de tractiune/compresiune si forfecare.

4.2. Teoremele reciprocitatii

Se considera o grinda elasticd AB incdrcatd cu doua forte F, si F, in punctele
@ si @ (Figura 4.2,a). Deformatiile in dreptul punctelor, urmare a aplicarii fortelor,
sunt A, si A,.

e Se considera grinda Incdrcata cu sarcinile exterioare F, si F, , energia
de deformatie fiind datda de relatia (4.13), scrisa sub forma:
L=U=U(F,F,);

e Se considera cazul in care se aplica numai forta F, rezultand deformatii
A, si A,;, In punctele @ si @ (figura 4.2,b). Deformatiile aparute in
cele doua punct pot fi scrise sub forma:
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Ay =0, F si Ay =6, F (4.12)

unde o, si J,, poartd numele de coeficienti de influenta;

e Se considerd, apoi, cazul in care se aplicd numai forta F, rezultind
deformatii A,, si A,,, in punctele @ si @ (figura 4.2,c). Deformatiile
aparute in cele doua punct pot fi scrise sub forma:

Ay, = 6,F, 51 Ay, = 6,8, (4.13)

unde o,, si J,, sunt coeficienti de influenta;

Figura 4.2

Aplicand principiul suprapunerii de efecte, pe baza relatiilor (4.12) si
(4.13) se obtine:
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A=A, +A,=0,F + J,F, (4.14)
si
Ay =4y + A, = 521F1 + 522F2 (4.15)

Observatie

Coeficientii de influenta reprezinta deformatiile din punctele @ si @
atunci cand in punctele respective sunt aplicate, pe rand, forte unitare. Acestia
sunt caracteristici ale grinzii A—-B.

Pentru calcularea lucrului mecanic realizat de fortele F, si F,
(figura 4.3) si implicit a energiei de deformatie se procedeaza astfel:

b)

Figura 4.3

e se presupune ca se aplica, static, pentru inceput forta F, , In
punctul @ (figura 4.3,a). Pe baza relatiei deformarii A;; din (4.12)

rezulta:

1 1 1
L, :EF1A11 :EF1(611F1)25511F12 (4.16)

e 1n continuare se aplica, static, forta F, , In punctul®, forta F,

ramanand aplicata la valoarea ei maxima (figura 4.3,b). Pe baza
relatiei deformarii A,, din (4.13) rezulta:
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1 1 1
L, = EF21A22 = EF2(522F2) = 55221;'22 (4.17)

e urmare a aplicarii fortei F,, punctul ©® se deplaseazd cu
cantitatea A,,. Ca urmare, forta F, efectueaza un lucru mecanic

care, pe baza relatiei deplasarii A,, din (4.13), este figura 4.4,a):

L,=FA,=F (5121:2) = 512F1F2 (4.18)
n
a)
S
AZI AZZ A
A,
b)
Figura 4.4

Adunand relatiile (4.16), (4.17) si (4.18) si tinand cont ca energia de
deformare este egala cu lucrul mecanic al sarcinilor exterioere, se obtine:

1 1 1

1
EF1A11 + EF21A22 + F1A12 = E

U1:L E

1,otal 5111:12 + 522F22 +0,FF, (4.19)

In mod similar se poate proceda si cu aplicarea, prima dati, a fortei E,
in punctul @ si apoi a fortei F, in punctul O rezultand o relatie de calcul
similara cu (4.19):

U, =L L

2,total =3
2

1
o, F + Eézzez +5,,FF, (4.20)

Tindnd cont de faptul ca lucrul mecanic dat de (4.19) si (4.20), si
implicit si energiile interne de deformare, sunt aceleasi, se botine egalitatea:
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1

1 1
55111712 + Eé‘zze2 + 512F1F2 =

55111'712 + %5221722 + 0y B F, (4.21)

din care rezulta:
0,,= 0,,. (4.22)

Relatia (4.22) defineste teorema reciprocitatii deplasarilor, teorema lui
Maxwell: deplasdrile intr-o sectiune oarecare ,i” produsd de o fortd unitard
aplicatd intr-o sectiune ,j” este egald cu deplasarea din sectiunea ,j” produsd de
o fortd egald cu unitatea aplicatd in sectiuna ,i”.

Teorema lui Betti are urmatorul enunt: lucrul mecanic produs de
sistemul de forte primar aplicat, care parcurge cu intreaga intensitate
deplasdrile secundare, este egal cu lucrul mechanic produs de sistemul de forte
secundar, care parcurge cu intreaga intensitate deplasdrile primare.

4.3. Teorema lui Castigliano

Tinand cont de teorema lui Clapeyron rezulta faptul ca energia de
deformatie este o functie dependenta de variabilele F, (fortele si/sau cuplurile

care compun incarcarea exterioara):

L=U=U(F,F,F,...,F,...,F,). (4.23)

n

Pentru simplificarea calculelor se considera grinda din figura 4.2,a
pentru care relatia de calcul a energiei interne de deformatie este (4.19):

1 1
U= 5511}712 + Eé‘zze2 +0,F F,.
Derivand relati in raport cu forta F; rezulta:

OF,  OF,

oUu a£1
2

1
_511F12 + 55221:22 + 512F1F2 j = 511F1 + 512F2 = A1 (4.24)

Considerand aceeasi relatie (4.19) in raport cu forta F, se obtine:
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ouv _ 0o

oOF " oF ( ~5,F2+ = 5221:2 +68,FF, ]: 5,F +5,F =A,  (4.25)

Pornind de la relatiile (4.24) si (4.25), in cazul unei structuri elastice
incarcate cu un sistem de sarcini exterioare , forte si/sau momente, notate
generic cu (Fl,Fz,Ig,...,E,...,Fn), deformarea intr-un punct , j”, unde este

aplicatd sarcina F;, masuratd de-a lungul directiei de actionare a sarcinii F,,

poate fi calculata cu relatia:

(4.26)

iar energia de deformare a structurii este calculata cu relatia:

U= %Z Z‘ S,FF, . (4.27)

Derivand relatia (4.27) in raport cu forta F j rezulta:

ou 1 1
o7 =220+ D 9 (428

Tindnd cont de egalitatea (4.22) scrisa pentru indicii ,, i ” si ,, j "

5 =5 (4.29)

y Jt

_ %Z5ko’< Z Z (4.30)

rezulta:

La modul general, deformarea intr-un punct oarecare ,, j” se calculeaza
cu relatia:
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0L _oU (4.31)
T OF,  oF,

Relatia (4.31) reprezinta prima teorema a lui Castigliano care
statueaza ca: Derivata partiald a energiei de deformatie in raport cu o sarcind
oarecare F; este egald cu deformarea corpului solid A; , produsd in dreptul si pe
directia sarcinii F]., atunci cand corpul se incarcd, in mod static, cu un un sistem
oarecare de fote si cupluri (momente).

Pe baza relatiei (4.31) pot fi facute urmatoarele remarci:

a) in cazul in care, se cere sa se calculze deplasarea sau rotirea intr-un
punct oarecare unde nu exista aplicate incarcari (forte sau
momente) pentru calculul deformatiilor se aplica, fictiv, o forta P,
sau un cuplu C, dupa care se calculeaza derivatele partiale in

raport cu forta fictiva sau cuplul fictiv in concordanta cu relatia
oL,

(4.31) A=

oL
u A].:a <,
sunt anulate;

b) deplasarea relativd dintre doua puncte poate fi calculata
introducand In ambele puncte doua forte fictive P,, egale si opuse
ca directie de actiune.

Considerand faptul ca lucrul mecanic este egal cu energia potentiala de

interna de deformare, si tindnd cont de teorema lui Castigliano definita prin
relatia (4.31), deformatia intr-un punct oarecare poate fi calculata cu relatia:

A:aLe:Z ﬁa—Ndx+ZJ‘al 8T ZJ‘M aM M, oM, dx
7 OF, EAOF, GA OF, El, 8F Gl, OF,
(4.32)

Observatie

In cazul aplicarii fortei fictive P, sau a cuplului fictiv C,, dupi ce se
calculeaza derivata, in relatia obtinuta se fac egale cu zero atit fota P, cat si
cuplul €, adica:

Aj:(aLej sau Aj:(aLej . (4.33)
OP, p0 ocC, ¢,=0
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Exemplul 4.2

Se considera grinda cotita din figura 4.5 de modul de elasticitate
constant EI_= ct. In punctul ® actioneazi o forti concentrati F. Se cere si se

determine:

a) deplasarea veriticala a punctului @, v, ;
b) deplasarea orizontald a punctului @, u,;
c) rotirea punctului @, ¢, ;

d) deplasarea verticalad a punctului ®, v, ;

e) rotirea punctului ®, ¢;.

Z <X>
2 o
Q
Y :;X .
@ X ®
Figura 4.5

Rezolvare:

a) deplasarea veriticala a punctului @, v, ;

Avand in vedere faptul ca in punctul @ exista o forta concentrata F,
derivarea lucrului mecanic exterior va fi facuta in raport cu aceasta forta:

Ca urmare se va scrie pe fiecare portiune in parte relatia momentului
incovoietor si se va deriva in raport cu forta concentrata F.
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Interval Moment incovoietor i oM. Limite
Derivata — .
OF interval
- M, ,=-Fx —X 0-2a
@-06 M,,,=-F-2a —2a 0-2a
®-® M, ,=-F-(2a+x) —(2a+ x) 0-3a

Aplicand relatia lui Castigliano, avem:

2a 2a

3a

[—F-(2a+ X) ][ —(2a+ x)]

v, = I (GL2I[GRIFN J'—F-Za(—Za) et I o
EL, El, EIL
0 0 0
3 2@ 2. |2 2 3 3a
_ X + AFax + Ll 4aPx +4a—+ | =
3EI,|  EI, | EI 213
0
3 3
= P8 g0 4 120 194° +18a° + 9a° |= 2224
EL\ 3 3EL

b) deplasarea orizontald a punctului @, u, ;

Avand in vedere faptul ca in punctul @ nu exista nicio forta pe directie
orizontald, se introduce o forta fictiva P, (colorata in rosu - figura 4.6) si se

scrie momentul incovoietor, pe fiecare interval in parte, tindnd cont de aceasta
forta. Derivarea se face In raport cu aceasta forta.

? X
Y, -~
2 o
S
i 5 F
Y Y @) @
Py X
Figura 4.6
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Observatie
Prin pozitionarea fortei P, (coloratd in rosu), asa cum este in schita

atasata, se presupune ca deplasarea are loc in directia de actiune a fortei (spre
dreapta).

Interval Moment incovoietor Derivata % .Limite
) interval
-0 M, ,=-Fx 0 0-2a
@-6 M, ,=—F-2a+Fx X 0 - 2a
®-® M, ,=-F-(2a+x)+F,-2a 2a 0-3a

In continuarea calculului, forta fictivdi se anuleazi (P,=0) si se
considerd relatiile momentelor incovoietoare fara aceasta forta F,. Ca urmare,
relatia de calcul este:

X =

2a 2a 3a
—_Fx). _F.2q. —F-(2a+ x)|-2a
”:ZJM . (I;I()Odﬁ.[ FEZIa XdHI[ (EI :

2a 2
2Fa b'¢
—— 2ax+—
El 2
0 z
Faptul ca valoarea iese negativa indica faptul ca deplasarea punctului

este In sens invers decat s-a considerat initial (spre dreapta - directia de
actiune a fortei P, ).

2Fa x*

EI, 2

3a
AFa® 2Fa( _ ., 9d* 25Fa®
=— - 6a” + =—
El  EL 2 EL

0

c) rotirea punctului @, ¢, (figura 4.7);

Deoarece in punctul ® nu exista niciun cuplu (moment) se introduce in
punctul @ un cuplu oarecare C, si se scrie momentul incovoietor, pe fiecare

interval in parte, tindnd cont de acest cuplu. Derivarea se face in raport cu
acest cuplu.
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Z <X>
7 .
Q
k. F
vy v e oY V¢,
lx\
Figura 4.7

Observatie
Prin pozitionarea cuplului C;, asa cum este in schita atasata (colorat cu

rosu), se presupune ca rotirea are loc in directia de actiune a cuplului (in sens
orar).

Interval Moment Incovoietor Derivata oM, .Lirnite

| interval
®-@ M,, ,=-Fx-C, -1 0-2a
®-0 M,, , =-F-2a-C, -1 0-2a
®-® M, ,=-F-(2a+x)-C, -1 0-3a

In continuarea calculului, cuplul (momentul) fictiv se anuleazi (C, = 0)
si se considera relatiile momentelor Incovoietoare fara aceast cuplu C,. Ca
urmare, relatia de calcul este:

ng?g I(Fx)(l)d J’FZa(l)d J- F(20+X)](1)

_F X

El 2

4

Y 2Fa o F 'S
+— + —| 2ax+—
El, *lo El 2

3a 2 2 2
_F A 4 peqr 1 20 | 2330
0 2 2 ) 2EL

0
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Faptul ca valoarea iese pozitiva indica faptul ca rotirea punctului este in
sens orar, in sensul de actionare al cuplului C,.

d) deplasarea verticalad a punctului ®, v, (figura 4.8);
Avand in vedere faptul ca in punctul ® nu exista nicio forta pe directie
orizontald, se introduce o forta fictiva P, (colorata in rosu - figura 4.8) si se

scrie momentul incovoietor, pe fiecare interval in parte, tindnd cont de aceasta
forta. Derivarea se face in raport cu aceasta forta.

3a p
2 x 177
2
2
4 S
)\k F
Yy vy @ o
<X>
Figura 4.8

Observatie
Prin pozitionarea fortei P, (coloratd in rosu), asa cum este in schita

atasata, se presupune ca deplasarea are loc in directia de actiune a fortei (spre
dreapta).

Interval Moment incovoietor Derivata oM, .Limite
) interval

-©® M, ,=-Fx 0 0-2a
©@-0 M,, ,=-F-2a 0 0-2a
®-® M, ,=~-F-(2a+x)- P, -x —X 0-3a

In continuarea calculului, forta fictiva se anuleaza (P, =0) si se
considera relatiile momentelor incovoietoare fara aceasta forta F,. Ca urmare,

relatia de calcul este:
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M, oM . [(-Fx)-0, f-F-2a-(0), f[-F-(a+x)]-(-x)
V3:Z J—’—’dx:-‘-—dx +I dx—i—J‘ dx=
VB o, ) EL I m, 0 El

2 3 3a
AU

0

_18Fd’
El,

Avand in vedere faptul ca valoarea obtinuta este pozitiva, rezulta ca
deplasarea punctului @ pe verticala este in jos, adica in sensul de actiune al
fortei fictive P,.

e) rotirea punctului ®, ¢, (figura 4.9);

Deoarece in punctul ® nu existd niciun cuplu (moment) se introduce in
punctul ® un cuplu oarecare C; si se scrie momentul incovoietor, pe fiecare

interval in parte, tindnd cont de acest cuplu. Derivarea se face in raport cu
acest cuplu.

Observatie

Prin pozitionarea cuplului C;, asa cum este in schita atasata (colorat cu

rosu - figura 4.9), se presupune ca rotirea are loc in directia de actiune a
cuplului (In sens anti orar).

2 B
z@ Rl
7 ©] Y
/ K
7 .
Q
K. F
Y vy |© @
lx\
Figura 4.9
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Interval Moment incovoietor Derivata % .Limite

| interval
©-0 M, ,=—-Fx 0 0-2a
-0 M, ,=—-F-2a 0 0-2a
®-® M, , =-F-(2a+x)+C, 1 0-3a

In continuarea calculului, cuplul (momentul) fictiv se anuleazi (C,=0)
si se considera relatiile momentelor Incovoietoare fara aceast cuplu C,. Ca
urmare, relatia de calcul este:

~ M, oM, (-F ) 0, . [~F:2 (0) ([-F-(2a+x)]-(1)
_ZIEI ac, ac, ™ _.[ ; I A I El dx =

0 z

3a
F 2 F 2 2
P oax X | oo B g 29 | _21Fa
EL 2 ) 2 2EI

Faptul ca valoarea iese negativa indica faptul ca rotirea punctului este
in sens orar, In sens invers sensului adoptat pentru cuplul C,.

4.4. Teorema lucrului mecanic minim. Teorema lui
Menabrea

In cazul sistemelor nedeterminate valorile necunoscute sunt fortele sau
momentele din legaturi (fortele/momentele de reactiune X,,X,,X.,..,X,).

Deformatiile (deplasari si rotiri) corespunzatoare acestor reactiuni sunt egale
cu zero si tinand cont de relatia (4.31)obtinem:
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oL

e

ox,

o, _,.
ox, (4.34)

)

oL

e

oX

n

Considerand ca lucrul mecanic este o functie dependenta si de
reactiuni:

L=f(X,X, X, X)), (4.35)

e

rezultd din relatiile (4.34), care reprezinta derivatele partiale ale lucrului
mecanic, ca lucrul mecanic are o valoare extrema in raport cu reactiunile

Observatie

Pe de alta parte, lucrul mecanic conform relatiei este pozitiv si tinand
cont de considerentele matematice rezulta ca valorile extreme raportate la
reactiuni sunt valor minime.

Pe baza celor de mai sus rezulta teorema lui Menabrea: Reactiunile
sistemelor nedeterminate au o astfel de valoare incdt Ilucrul mecanic de
deformare al intregului sistem este minim.

Aceasi procedura poate fi aplicatda pentru sistemele nedeterminate
interior. In acest caz, drept valori necunoscute sunt considerate fortele axiale,
taietoare, momentele de incovoiere sau torsiune.

4.5. Metoda sarcinii unitare. Relatia Mohr-Maxwell

Asa cum s-a determinat in subcapitolul 4.3, deplasarea Intr-un punct
oarecare al unei structuri poate fi calculata cu relatia lui Castigliano (4.32):

oL N ON T oT M aM M, 8M
A =—=%t= — ——dx+ o———dx+ j—b I
g aFj zJ‘EA GFJ. Z GA 8Fj z EI, 8F Z GI aF
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Fiecare sarcina exterioara influenteaza marimea eforturilor sectionale.
Eforturile sectionale, dintr-o sectiune transversala oarecare, pot fi exprimate
ca functii liniare si omogene de solicitdri exterioare:

N =nF +n,F,+mF, +...+nF,+...+nF ;
T=tF+t,F,+t;F+.. 4+t F+.. +t F ; (4.36)
M, =m, \F,+m, ,F,+m F;+...+m F +...+m F ;

M; =m;,F,+m, ,F, +m, F+...+m,  F,+..+m, F_,

unde n,t;,,m, ,m;  sunt coeficienti de influentd.

Semnificatia fizica a coeficientilor de influenta rezulta din considerarea
unei sarcini exterioare, oarecare F,, egald cu unitatea (F, =1) restul fiind egale

cu zero. Ca urmare, relatiile (4.36) devin:

N:nj;
T=t;
(4.37)
M, =m,;;
M, =m, ;.

Din (4.37) rezulta faptul ca, n,t,m, ,m;  sunt eforturile sectionale

dintr-o sectiune curenta dezvoltate atunci cand se aplicd o forta egala cu

a~

unitatea in acelasi punct de aplicatie si pe aceeasi directie ca si forta F,. In
mod similar, sunt definiti si ceilalti coeficienti.
Derivéand relatiile (4.36) in raport cu sarcina exterioara F, se obtin
relatiile:
ON
- = nj;
oF,
oT

oF,
(4.38)
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Tintnd cont de (4.38), relatia de calcul a deformatiilor (4.32) rezulta o
nouad formula de calcul a acestora:

A, Z ZJ.a—dx+ZJ. Zj iz "dx(439)

Relatia (4.39) mai este cunoscuta si sub denumirea de relatia lui Mor-
Maxwell. Pentru aplicarea ei se parcurg urmatoarele etale:

e Etapa 1 - se introduce o sarcind exterioara virtuald unitara F;=1

(forta sau moment) In punctul si dupa directia deformatiei ce se
doreste a fi calculata;

e Etapa 2 - se determina relatiile eforturilor sectionale N,T,M,,M,
produse de incarcarea exterioara reald, pe fiecare interval in parte;

e Etapa 3 - se determina relatiile eforturilor sectionale n,t,m, ,m
produse de incdrcarea exterioara unitara F;=1, pe fiecare interval
in parte;

e Etapa 4 - se calculeaza integralele din relatia (4.39).

In sintezi, cele doud metode, Castigliano si Mohr-Maxwell, se definesc
prin aspectele prezentate in tabelul 4.1.

Tabelul 4.1
Metoda de Incircarea din punctul de calcul al deformatiei
calcul . . . . .
Existenta sarcinii Inexistenta sarcinii exterioare F,
exterioare F;
Se realizeaza derivata | Se introduce o sarcind exterioare
eforturilor sectionale in | fictiva Q; (forta sau moment), se
Castigliano rapor.t vcu Sarcina | 506 derivarea eforturilor sectionale
exterioara F; in raport cu @, iar in calculul
integralelor sarcina fictivd Q, se
anuleaza.
Metoda Se introduce o sarcind exterioard unitara Q,=1 (fortd sau
for}celor moment) In punctul de calcul a deformatiei si se aplica relatia
unitare (4 39)
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Exemplul 4.2 prin Metoda Mohr-Maxwell (figura 4.5)

Se reconsiderd bara cotitd din figura 4.5. In cazul metodei Mohr
Maxwell, in punctul si pe directia deformarii de pun incarcari unitare:

a) Forta unitara pentru calculul deplasarii;
b) Cuplu unitar pentru determinarea rotirii.

Dupa introducerea incarcarilor unitare se Inmultesc momentele reale
M. cu cele unitare m, :

Mimil
A= z j—EIZ dx

a) deplasarea verticald a punctului @, v, (figura 4.10);
Se introduce o forta egala cu unitatea in acest punct (Figura 4.10,b -
colorata in rosu).

Ca urmare se va scrie pe fiecare portiune in parte relatia momentului
incovoietor real si a celui unitar 1. Grinda este parcursa prin interiorul ei,
deplasandu-se de la dreapta la stanga.

3a 3a

®
&)

bz
bg

2a 2a

Figura 4.10
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Interval | Moment incovoietor real Moment unitar de Limite
incovoiere m, interval

- M, ,=-Fx -1-x 0-2a
®-06 M,, ,=-F-2a —-1-2a 0-2a
®-@ M, ,=-F-(2a+x) -1-(2a+ x) 0—3a

Aplicand relatia Mohr-Maxwell, avem:

2a 2a 2a
_ 1. —F-2a(-1- —F-(2a+ x) || -1-(2a+ x
V1=J~( Fx)(lx)dX+J‘ F2a(12a)dX+J‘[ a+x)|[-1-a+x)]
EI EI EI
0 0
3 |%@ 2_|%@ 2 3\
L. X| v E 4y vaa® X =
3EI El, | 2 3
z o z o z 0
3 3
= F 189 g4 4 12¢°+9a° + 18a° + 9a° |= 1224
El | 3 3EI

b) deplasarea orizontala a punctului @, u, ;

- se introduce o forta egala cu unitatea In acest punct (colorata in rosu -
figura 4.11,b)

3a 3a

&)
&)

bz
bg

Figura 4.11
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Interval | Moment incovoietor real Moment unitar de Limite
incovoiere m; interval

@ - M, , =-Fx 0 0—2a
- M, ;=-F-2a 1-x 0—-2a

- M, , =-F-(2a+ x) 1-2a 0-3a

Aplicand relatia Mohr-Maxwell, avem:

EI

2a 2a 3a
m. —Fx)- —F-2a-(1- —F-(2a+ -(1-2
UZ:ZIM'm” dx:.[( Fx) 0dx+I F-2a-(1 X)dx+j[ (2a X)] ( a)dxz
1 El ' EI, ' EIl, '

_ 2Fax’

- EL 2

2a

2Fa x*
_ AR ax e X
EI 2
0 4 0

z

3a

__4Fd _2Faf ., 9a*)__25Fd’
2 2E1,

Faptul ca valoarea iese negativa indica faptul ca deplasarea punctului
este in sens invers decat s-a considerat initial (spre dreapta - directia de
actiune a fortei unitare 1).

c) rotirea punctului ©, ¢, ;

- se introduce un cuplu unitar in punctul ©

3a 3a

AR
®

®
AN
®
®

Figura 4.12
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Interval | Moment incovoietor real Moment unitar de Limite
incovoiere m, interval

©-0 M,, ,=—-Fx -1 0-2a
®@-06 M, ,=—-F-2a -1 0-2a
®-@ M, ,=-F-(2a+ x) -1 0-3a

Ca urmare, pe baza relatiei de calcul Mohr-Maxwell, avem:

z

2a 2a 3a
m. — (- _F. (= —F-(2a+ (-1
q)l:ZIM,mIldX:I( Fx)-( ”mj F-2a-( ”mj[ Ra+)]-(1), _
) El, » El, ) EIl, ) El

F x*

EI 2

z

T Bl
0 Z

2El

— +4a* + 6a* +
2 2

2a 2\[3 2 2 2
2Fa |2 F X F | 4a 9a 33Fa
+=——x[ +—|2ax+— — |=
EI, 0 El 2

0

Faptul ca valoarea iese pozitiva indica faptul ca rotirea punctului este in
sens orar, In sensul de actionare al cuplului unitar 1.

d) deplasarea verticalad a punctului ®, v, ;

- se introduce o fortd unitara in punctul ® (figura 4.13)

3a 3a

AN
®
©
AR

<
- S

2a 2a

Figura 4.13
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Interval | Moment incovoietor real Moment unitar de Limite
incovoiere m, interval

-0 M, , ,=-Fx 0 0-2a
-0 M, ,=-F-2a 0 0-2a
®-® M, ,=~-F-(2a+x) -1-x 0-3a

Pe baza relatiei Mohr-Maxwell avem:

J.Mé J‘ (-Fx)-0,, J' ~F-2a-0, T[—F-(2a+x)]-(—1-x)dxz

EI
2 3 3a
— i 2aX_ + X_ —
EL\" 2 3

0

18Fd’°
El

Avand 1n vedere faptul ca valoarea obtinutd este pozitiva, rezulta ca
deplasarea punctului @ pe verticala este in jos, adica in sensul de actiune al
fortei unitare 1.

e) rotirea punctului @, ¢, .
- se introduce 1n punctul ® un cuplu unitar (figura 4.14)

3a 3a

AR
®
ARG
®
\
¥

bz
bz

2a 2a

Figura 4.14
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Interval | Moment incovoietor real Moment unitar de Limite
incovoiere m, interval
0-0 M, ,=-Fx 0 0-2a
@-0 M, ,=-F-2a 0 0-2a
®-® M, ,=-F-(2a+x) 1 0-3a

Pe baza relatiei Mohr-Maxwell avem:

ZIM oM, , J‘(—Fx)-(O) X+J‘—F-2a-(0)dX+J‘[—F'(20+ 0],
El ac EL a T El

0 z

2\ 2 2
P oax X | oo B g 20 | _21Fa
El 2 )~ E, 2 2E1

z

Faptul ca valoarea iese negativa indica faptul ca rotirea punctului este
in sens orar, adica in sens invers sensului adoptat pentru cuplul unitar.

Exemplul 4.3

Se considera structura din Figura 4.15 de sectiune constanta patrata de latura
b. Structura este Incastrata in punctul @ si libera in punctele @ si @. In
punctul @ actioneaza o forta egala cu 2F .

Se cere sa se calculeze:
a) Rotirea in punctul @ (¢, );

b) Deplasarea orizontala a punctului @ (u, );

c) Deplasarea verticalad a punctului @ (v, ).

Rezolvare
Se vor folosi metoda Castigliano si metoda fortelor (Mohr-Maxwell)
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/

\

Figura 4.15

a) Determinarea rotirii in punctul ®

Metoda Castigliano Metoda fortelor (Mohr-Maxwell)

Deoarece in punctul @ nu existd | Se introduce un moment unitar in
moment se va introduce un moment | punctul ©.
fictiv C,.

2a S

®
\’1

2a S

e
—

Co

Figura 4.16 Figura 4.17

Se scriu momentele Incovoietoare pe | Se scriu momentele incovoietoare pe
fiecare portiune (figura 4.16) si se | fiecare portiune datorate incarcarii
deriveaza in raport cu momentul fictiv | reale (conform figurii 4.15) si
C,. momentele rezultate din actiunea
momentului unitar introdus in
punctul O (figura 4.17).

(=]
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interval M, oM; limite | interval M, m, limite
oc,

-0 C, 1 0+a ©-0 0 1 0+a

@-0 2Fx 0 0+a @-06 2Fx 0 0+a

®@-® 2Fa +C, 1 0+ 2a - 2Fa 1 0+ 2a

Se calculeaza rotirea in punctul ® conform cu relatiile de calcul:
e Metoda Castigliano

ZIM M, , d J‘ZFX 0, 2Fa-1dx 2F _4Fd’
El 8C El EI *lo El
e Metoda fortelor (Mohr_Maxwell)

Z IMl.mil J‘ZFX 0, T2Fa-1 2F o 4Fd’

= d dx =—xXx| =
El EIl, EI, " EIl,
b) Deplasarea orizontala a punctului @ (u,);
Metoda Castigliano Metoda fortelor (Mohr-Maxwell)

Deoarece in punctul @ exista o fortd | Se introduce o fortd wunitara in
oarecare (de intensitatea 2F) se va | punctul @.

considera forta existenta ca fiind o
forta oarecare P (2F=P).
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—

Figura 4.18

—

Figura 4.19

Se scriu momentele Incovoietoare pe
fiecare portiune (figura 4.18) si se
deriveaza in raport cu forta P, dupa
care in calculul relatiei forta P este
inlocuita cu 2F

Se scriu momentele incovoietoare pe
fiecare portiune datorate Incarcarii
reale (conform figurii 4.15) si
momentele rezultate din actiunea
fortei unitare introduse in punctul ®
(figura 4.19).

interval M, oM; | limite | interval M, m, Limite
oP

-0 0 0 0+a -0 0 0 0+a

-Q Px X 0+a -0 2Fx 1-x 0+a

®-® Pa a 0+ 2a ®-® 2Fa 1-a 0+ 2a

Se calculeaza deplasarea pe orizontala in punctul @ conform cu relatiile de

calcul:
e Metoda Castigliano

ZJ‘M oM, :j‘O J‘Px x
El, aP 0E

2 14Fd’
X =
Y

2Fd*
El

2Fx3 "
= +
3EL |,

e Metoda fortelor (Mohr_Maxwell)

2a
J‘Pa a J‘ZFX xdx+J‘2Fa-adX:
El, El,
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2Fa-1-a , 2F| 2Fd* pa 14Fd’
dx= + x| =

J.zll

0

2a
J’ dyt J‘ZFX 1- de+I
0

EI ~3EL |

El

c) Deplasarea verticald a punctului @ (v,).

Metoda Castigliano Metoda fortelor (Mohr-Maxwell)
Deoarece in punctul @ nu existd o | Se introduce o forta unitara In
fortd verticald In punctul @, se | punctul @.
introduce o forta verticala fictiva
oarecare F,.

2P, 1
/% o |2F /7 ®
% @ i o] ° / @ i o] °
% 2a = S % 2a S
> >
/ @ /é @
Figura 4.20 Figura 4.21

Se scriu momentele incovoietoare pe
fiecare portiune (figura 4.20) si se
deriveaza in raport cu forta F,.

Se scriu momentele incovoietoare pe
fiecare portiune datorate Incarcarii
reale (conform figurii 4.15) si
momentele rezultate din actiunea

interval M, oM, limite | interval M, m, limite
oP,

-® 0 0 0+a ®-0 0 0 0+a

-® 2Fx 0 0+a @-0 2Fx 0 0+a

®-® 2Fa-2Px —X | 0+2a ®@-® 2Fa | -1-x 0+ 2a

Se calculeaza deplasarea verticala in punctul @ conform cu relatiile de calcul:
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e Metoda Castigliano

ZJ-M oM, , d J‘ZFX 0, J‘ZFa( X) g, _2Fax’["__4Fa
El aP El, 2|, EI,
e Metoda fortelor (Mohr_Maxwell)
(0.0 t2rx-0  f2Fa-(-1-x) 2Fa x*[" 4Fd
I iy x=I—dx+I dx+j dx=———| =
Ve ) o EI, 2| EI

Exemplul 4.4

Se considera grinda din Figura 4.22 de sectiune constantd, circulara, de
diametru d. Structura este incastratd in punctul @ si ibera in puctul ©. In
punctul @ actioneaza o fortd egala cu 2F .

Se cere sa se calculeze:
a) Deplasarea pe verticala in punctul @ (v, );

b) Deplasarea pe verticala a punctului @ (v, );
c) Rotirea punctului @ (¢,).

Se vor folosi metoda Castigliano si metoda fortelor (Mohr-Maxwell)

2F

\
Y
\
I

B

Figura 4.22

a) Deplasarea pe verticala in punctul ® (v,)

125




REZISTENTA MATERIALELOR

METODE ENERGETICE DE CALCUL A DEFORMATIILOR

Metoda Castigliano

Metoda fortelor (Mohr-Maxwell)

Deoarece in punctul @ nu exista nicio
forta se va introduce o forta fictiva F,.

Se introduce o forta unitara in
punctul ©.

I
2F Py
I

Figura 4.23

S

=

Figura 4.24

Se scriu momentele incovoietoare pe
fiecare portiune (figura 4.23) si se
deriveaza in raport cu momentul fictiv

Se scriu momentele incovoietoare
e fiecare portiune datorate
incarcarii reale (conform

o

C, figurii 4.22) si momentele rezultate
din actiunea fortei unitare introduse

in punctul © (figura 4.24)
interval M, oM, limite | interval M, m, limite

oP,
-0 -P,-x —X 0=+a ®-0 0 -1-x 0+a
@-® | -P(a+x)- | —(a+x)| O0+a @-0 —2Fx | —1(a+x)| 0+a
—2Fx

Se calculeaza rotirea in punctul ® conform cu relatiile de calcul:

e Metoda Castigliano

ZIEI 6P

2F [ x*
=—|a—+
El 2

x3)a_
3
0

J-o( x) J~—2Fx[ (a+x)]

2F [ &
Rl
EL\ 2
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e Metoda fortelor (Mohr_Maxwell)

:E—IZ

X

ZF[ x5 x

3 a
a_+_j -
0

2 3

-1- (a+x)]

J'o (EI1 x) J‘—ZFX _

2F ( &°
il .
EL\ 2

EI

Q

° ) 5Fa’
3 ) 3EL

b) Deplasarea pe verticala a punctului @ (v, );

Metoda Castigliano

Metoda fortelor (Mohr-Maxwell)

Deoarece in punctul @ exista o forta 2F
si se va considera aceasta forta egala cu

U

Se introduce o forta unitara in
punctul @.

2F = Py

-

Figura 4.25

—

Figura 4.26

Se scriu momentele incovoietoare pe
fiecare portiune (figura 4.25) si se va

deriva in raport cu

face inlocuirea P, = 2F .

P,, dupa care se va

Se scriu momentele incovoietoare
pe fiecare portiune datorate
incarcarii reale (conform figurii
4.22) si momentele rezultate din
actiunea fortei unitare introduse in
punctul @ (figura 4.26)

interval M, oM; limite | interval M, m, limite
OF,

®-0 0 0 0+a ©-0 0 0 0+a

@-0 -Px —X 0+a @-0 —-2Fx | —-1-x 0+a
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Se calculeaza deplasarea verticala in punctul @ conform cu relatiile de calcul:

e Metoda Castigliano

a a

. . . —Px-|—x 3\
=3 [MM gy [0 [y B
El, oP, ) El, ) El, El\ 3

e Metoda fortelor (Mohr_Maxwell)

a

m, ro- —2Fx-|-1-x 3
= [Mm gy [0y, [y 28
El El, El, El, 3

0 0

c) Rotirea punctului @ (¢,).

_2Fd’
3EI

0 zZ
‘ _2Fa’
. 3E

Metoda Castigliano

Metoda fortelor (Mohr-Maxwell)

Deoarece in punctul @ nu existd un
moment, se va introduce un cuplu fictiv
C,.

Se introduce un cuplu unitar in
punctul @.

7
7
7
V777
;////;
f’ Z 2F
" S
SIS 4
V7777716 @) AN f 0)
7 JCo X
ZA X
y//ﬂ/
;')J e a a
Z o< St >
y//ﬂ4
wr
SIS
7
s 7
Figura 4.27

N
\

X
N
N
N

AN
NN
N
NN

R
AN,

7

© i @\ f o
7 Z v |/ X
771 — > —— >
-« a
7 -< >
Figura 4.28

Se scriu momentele incovoietoare pe
fiecare portiune (figura 4.27) si se
deriveaza in raport cu forta C, .

Se scriu momentele incovoietoare
e fiecare portiune datorate
incarcarii reale (conform
figurii 4.22) si momentele rezultate
din actiunea cuplului unitar
introdus in punctul @ (figura 4.28)

o
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interval M, oM, limite | interval M, m, limite
oc,

®-0 0 0 0+a -6 0 0 0+a

@-® | -2Fx+C, 1 0O+ra | @-O® | -2Fx 1 0+a

Se calculeaza rotirea in punctul @ conform cu relatiile de calcul:
e Metoda Castigliano

ZJ‘M oM, | d J‘ZFxl _ kX Fd
El 6C El, 2| El
e Metoda fortelor (Mohr_Maxwell)
_ZIMimil d J‘ —2Fx-1 __EX_ZG__F_GZ
EIl El, 2| El
Observatie

e semnul (-) indica faptul ca rotirea este in sens invers sensului de rotire a
cuplului C;.

Exemplul 4.5

Se considera structura din figura 4.29 de sectiune constanta patrata de latura
b. Structura este incastrata in punctul @ si libera in punctele ©® si @. In
punctul @ actioneaza o forta egala cu 2F .

Se cere sa se calculeze:
a) Deplasarea pe orizontald in punctul ® (u, );

b) Deplasarea pe verticala a punctului @ (v, );

c) Rotirea in punctul @ (¢,).
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3a

—

Figura 4.29

Se vor folosi metoda Castigliano si metoda fortelor (Mohr-Maxwell)

a) Deplasarea pe orizontala in punctul © (u, );

Metoda Castigliano

Metoda fortelor (Mohr-Maxwell)

Deoarece in punctul @ exista o forta
concentrata 3F se va considera aceasta
forta egala cu o forta oarecare P, .

Se introduce o fota wunitara in
punctul ©.

@

3F

k]

S

P,

=1

3a

R

Figura 4.30

3a

e

Figura 4.31

Se scriu momentele incovoietoare pe
fiecare portiune (figura 4.30) si se
deriveaza in raport cu forta P,, dupa

Se scriu momentele incovoietoare
pe fiecare portiune datorate
incarcarii reale (conform
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care se inlocuieste in calcul forta P, cu | figurii 4.29) si momentele rezultate
3F. din actiunea fortei unitare introdusa
in punctul ® (figura 4.31).
interval M, oM, limite | interval M, m, limite
oP,
-0 P x X 0+a -0 3Fx 1x 0+a
@-0 Pa a 0+3a @-0 3Fa la 0+ 3a

Se calculeaza deplasarea orizontala in punctul @ conform cu relatiile de calcul:

e Metoda Castigliano
Poaz 3a

a 3a a

M. oM. Px- Pa- P, x°
u = E —’—’dx:J. o de+I Nl N L X
EI, 0P, ) El, ) El, EI, 3| EI "

0 zZ
3Fd’ +9Fa3 _ 10Fd’
3ElI, EI El

zZ z zZ

e Metoda fortelor (Mohr_Maxwell)

a

Z 3Fx-1x 3Fa-la 3F x°
I I dx f dx=>L X
EL EI, 3|,

b) Deplasarea pe verticala a punctului @ (v, );

3Fa’ o 10Fa’
El " EL

Metoda Castigliano Metoda fortelor (Mohr-Maxwell)

Deoarece in punctul @ nu exista o forta | Se introduce o forta verticala
concentratd se va considera o fortd | unitara in punctul @.
fictiva oarecare P, orientatd In directie

verticala.
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3a

S

Figura 4.32

P,

3a

—

Se scriu momentele incovoietoare pe
fiecare portiune (figura 4.32) si se

deriveaza in raport cu forta F,.

Figura 4.33
Se scriu momentele incovoietoare
pe fiecare portiune datorate
incarcarii reale (conform

figurii 4.29) si momentele rezultate
din actiunea fortei unitare introduse

in punctul @ (figura 4.33)
interval M, oM, limite | interval M, m, limite
oP,
O-0 3Fx 0 0+a -0 3Fx 0 0+a
@-0 3Fa + Px X 0+3a -0 3Fa 1x 0+ 3a

Se calculeaza deplasarea verticala in punctul @ conform cu relatiile de calcul:

e Metoda Castigliano

ZJ‘M BM

e Metoda fortelor (Mohr_Maxwell)

V_Z.[ ”1d—
0

F3Fx-0 dx J‘3Fa X4 3Fax 27Fa3
2EI, ,  2EI

©3Fx-0 I J‘3Fa x, _3FX 7RG
B 2 . 2K
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d) Rotirea in punctul @ (¢, ).

Metoda Castigliano

Metoda fortelor (Mohr-Maxwell)

Deoarece in punctul @ nu existd un
moment concentrat se va considera un

cuplu fictiv oarecare C,.

Se introduce un cuplu unitar in
punctul @.

3a

N\

Figura 4.34

Figura 4.35

Se scriu momentele incovoietoare pe

Se scriu momentele Tncovoietoare

fiecare portiune (figura 4.34) si se | pe fiecare portiune datorate
deriveaza in raport cu forta C, . incarcarii reale (conform
figurii 4.29) si momentele rezultate
din actiunea cuplului unitar
introdus in punctul @ (figura
4.35)
interval M, oM, limite | interval M, m, limite
oC,
-0 3Fx 0 0+a -0 3Fx 0 0+a
@-0 3Fa +C, 1 0+3a @-0 3Fa 1 0+ 3a

Se calculeaza rotirea in punctul @ conform cu relatiile de calcul:

e Metoda Castigliano

133




REZISTENTA MATERIALELOR METODE ENERGETICE DE CALCUL A DEFORMATIILOR

ZJ‘M oM, | _ [3Fx: od J‘3Fa 1, 3Fax| a*
B, oc, EIZ

Z 0

e Metoda fortelor (Mohr_Maxwell)

ZI , Ild [3Fx- od J‘3Fa1 _3Fax™ 9Fd’
El

Z 0 V4

Exemplul 4.6

Se considera structura din Figura 4.36 de sectiune constanta circulara de
diametru d. Structura este incastrata in punctul ® si libera in punctul ®. In
punctul @ actioneaza forta 3F iar in punctul @ actioneaza o forta egala cu 2F .

Se cere sa se calculeze:
a) Deplasarea pe orizontald in punctul ® (u, );

b) Deplasarea pe verticala a punctului @ (v, );

c) Rotireain punctul @ (¢, ).

21«‘( 3a _ /

3a

Figura 4.36
Se vor folosi metoda Castigliano si metoda fortelor (Mohr-Maxwell)

a) Deplasarea pe orizontald in punctul ® (u, );
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b)

Metoda Castigliano

Metoda fortelor (Mohr-Maxwell)

Deoarece in punctul @ existd o forta
concentrata 3F se va considera aceasta
forta egala cu o forta oarecare F,.

Se introduce o fota unitara 1
punctul O (figura 4.38).

=

3a

AN

3a

Se scriu momentele incovoietoare pe
fiecare portiune (figura 4.37) si se
deriveaza in raport cu forta P,, dupa
care se inlocuieste in calcul forta P, cu
3F.

o=
>
1 O
Figura 4.38
Se scriu momentele incovoietoare
pe fiecare portiune datorate
incarcarii reale (conform

figurii 4.36) si momentele rezultate
din actiunea fortei unitare introdusa

in punctul ® (figura 4.38).
interval M. oM ; limite | interval M, m limite
oP,
-0 —-Px —X 0+3a ©-0 —3Fx —1x | 0+3a
@-® | -3aP,-2Fx | —3a | 0+3a @-® | 9Fa- | —1-3a| 0+3a
—2Fx

Se calculeaza deplasarea orizontala in punctul ® conform cu relatiile de calcul:

Metoda Castigliano

3a 3a
u, = Z J‘%%dx = J'—(_POX).(_X) dx +j(_P° -3
EI &P, ), 0

3a 3a

P, x° 9POa2

El

d

6Fa x*
X+——
EI 2

0
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_R27@ 27Rd’  S54Fd’ _3F-27a 27-3F-a’ 27Fa’ _135Fd’

u
' 3EL El 2EI 3EI

e Metoda fortelor (Mohr_Maxwell)

z z

El, El, El,

EI

3a 3a
u, = Z J‘Ml.ml.l dX:J‘(—BFx)-(—lx) dx +J‘(—9Fa—2Fx)-(—1-3a) dxe
EI, f El )

3a 3a

27Fa*

3F x°
= — +
El

3F sa 6Fa x*
El, 3

X +
o "EI 2

0 0

27Fd’ s 81Fa’ . 27Fa’® 135Fd’®
El,  EI El El

z z z

b) Deplasarea pe verticala a punctului @ (v,);

Metoda Castigliano

Metoda fortelor (Mohr-Maxwell)

Deoarece in punctul @ existd o forta
concentrata 2F se va considera aceasta
forta egala cu o forta oarecare P.

Se introduce o fota wunitara 1
punctul @ (figura 4.40).

=

2r=p “3" %

Figura 4.39

Se scriu momentele incovoietoare pe
fiecare portiune (figura 4.39) si se
deriveaza in raport cu forta P, dupa
care se inlocuieste in calcul forta P cu
2F .

| 3a
1\'{ /z/
j /
o @%
*
5
0]
Figura 4.40
Se scriu momentele incovoietoare
pe fiecare portiune datorate
incarcarii reale (conform

figurii 4.36) si momentele rezultate
din actiunea fortei unitare introdusa
in punctul @ (Figura 4.40).
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interval M, OM, | limite | interval M, m;, limite
P
©-0 —3Fx 0 0+3a | ©-©@ —3Fx 0 0+ 3a
@-® | -3F-3a-Px| —x 0+ 3a @-® | 9Fa- | -1x 0+3a
—2Fx

Se calculeaza deplasarea verticala in punctul @ conform cu relatiile de calcul:

e Metoda Castigliano

3a

3a _ ) 3a _ . _ _ 2 3
ZJ‘M GM :J'( 3Fx) 0dx+j( 3F -3a—-Px)( X)dx: ﬁx__‘_ix_
El ) E EIl, 2 EI 3

z

_ 81Fd’ . 2F-8la’ 189Fd’
> 2EI 3EI 2EI

V4 V4 Z

e Metoda fortelor (Mohr_Maxwell)

3a _ ) 3a _ _ (1. 213 3 3
V_zj‘ my, J‘( 3Fx)0dX+J‘( 9Fa 2Fx)(1x)dX:9Fax_ +£x_

El El EI, 2| El, 3|

0 0
81Fa’ 2F-81a’° 27Fa’ 189Fad’

Vv, = + + =
2EI,  3EI EI 2EI

c) Rotireain punctul @ (¢,)
Metoda Castigliano Metoda fortelor (Mohr-Maxwell)

Deoarece in punctul @ nu existd un | Se introduce un moment unitar in
cuplu, se va introduce 1n acest punct un | punctul @ (figura 4.42).
moment oarecare concentrat C, .

137



REZISTENTA MATERIALELOR

METODE ENERGETICE DE CALCUL A DEFORMATIILOR

3a
2F
3o |
| SO .
>
Y ~y
3FT O
Figura 4.41

A\

3a

3a -
\ Vi
/ X
A
r "y
O]
Figura 4.42

N\

Se scriu momentele incovoietoare pe

fiecare portiune (figura 4.41) si se | pe

deriveaza in raport cu momentul C,.

fiecare
incarcarii
figurii 4.36) si momentele rezultate

datorate
(conform

Se scriu momentele incovoietoare
portiune
reale

din actiunea momentului unitar
introdus in punctul @ (figura
4.42).

interval Mi oM, limite | interval Mi m, limite

oc,
- —3Fx 0 0+3a| ®-0 —3Fx 0 0+ 3a
@-0 | —3F-30-2Fx— -1 0+ 3a @-06 —9Fa— -1 0 +3a
—C, —2Fx

Se calculeaza deplasarea verticala in punctul @ conform cu relatiile de calcul:

e Metoda Castigliano

M, oM,
V2 _ZIEI aP

" (=3Fx)-0

El

2R)(-1)

9Fa
X+

3a
dx +I (=9Fa-
0
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, _27Fa’ 9a’ _36Fd’
* EI, EI, EI

z

e Metoda fortelor (Mohr_Maxwell)

3a 3a 2 3a
v, = Z:J‘Mimi1 dX:J‘(—SFx)-OdX +J‘(—9Fa—2Fx)-(—1) dye 9Fax3a+2_Fx_
EI ) El, ) EI EI,"" EI, 2|

b 27Fa’ . 9Fa’ 36Fa’
* EI, EI El

V4

4.6. Metoda lui Mohr-Veresciaghin

Se considera o portiune de grinda la care se analizeaza diagrama de
momente incovoietoare rezultata din Incadrcarea exterioara reald si cea de
momente incovoietoare rezultata din Incarcarea unitara (figura 4.43).

Corespunzator acestui element de arie, In diagrama de momente 1i
corespunde un element de arie egal cu:

dQ, = M, dx. (4.40)

In diagrama de momente rezultata din 1incarcarea unitara,
corespunzitor momentului de incovoiere M ; din diagrama de incarcare reala,

ii corespunde un moment incovoietor unitar m;;, care este egal cu:
m, =Xx-tgo. (4.41)

Considertnd integrala aferenta solicitarii de incovoiere din relatia
(4.39), fara a considera modulul de rigiditate EI =ct.:

2

2 2 2
IMimik dx = '[Ml. -X-tgo dx = jx-tgain =tga J.dei (4.42)
1 1

1 1
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A A

b)

Yo,

Figura 4.43

In relatia (4.42) ultima integrald este egald cu momentul static al
suprafetei diagramei de momente reale:

2
deQ —Qx, (4.43)

1

unde €2 reprezinti aria diagramei de momente reale, iar x, este abscisa
centrului de greutate al acestei diagrame.
Combinand relatiile (4.42) cu (4.43) rezulta:

2
tgo _[Xde = tgaQx, =Qx tga =Qm,. (4.44)

1
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Pe baza relatiei (4.44) se poate concluziona ca integrala
corespunzatoare din relatia (4.39), corespunzatoare solicitarii de incovoiere,
de pe o portiune de grindadreaptd, este egala cu produsul dintre aria
diagramei de solicitare si efortul produs de incarcarea unitara din dreptul
centrului de greutate al suprafetei Q.

Pe bazaacestei reguli de inmultire a diagramelor se numeste metoda
lui Veresceaghin. Ea se aplica tuturor eforturilor din sectiunile drepte de
bare. Ca urmare, relatia de calcul generalizata etse:

Q. n Q. .t Q) Mg Q, My
PO L . I N R G e 445
k z EA Z GA Z Gl, Z El ( )

z
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SISTEME STATIC
NEDETERMINATE

5.1. Introducere

Structurile nedeterminate static apar mai frecvent in practica decat cele care sunt
determinate static si sunt, In general, mai economice prin faptul ca sunt mai rigide si mai
puternice.

F>

l Y

(o Y

Y

Figura 5.1

Se considera cadrul prezentat in figura 5.1. Cadrul este incarcat cu sarcini coplanare
astfel incat sistemul este bidimensional.

Deoarece elementele verticale AC si BD ale cadrului sunt fixe la A si B, sarcinile aplicate
vor genera un total de sase reactiuni 3 forte si 3 momente, asa cum este prezentat in figura.

Ecuatiile de echilibru static sunt:

D X=0; X,+F,+X,=0;
D Y=0; V,-F+Y,=0; (5.1)

D M, =0; M, +F, I+F,-1-Y, -1+ M,=0.
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Asa cum rezulta din sistemul de ecuatii (5.1), sunt 6 valori necunoscute
(X,,X;,Y,,Y;,M,,M;) sinumai 3 ecuatii de echilibru.

Concluzia este ca sistemul este static nedeterminat

In functie de cauza nedeterminarii, pot fi identificate trei tipuri de sisteme static
nedeterminate:

a) sisteme cu nedeterminari exterioare, caz In care numarul reactiunilor exterioare
este mai mare decat numarul ecuatiilor de echilibru cunoscute din static si care
sunt aplicabile sistemului respective. Nedeterminarea apare ca urmare a numarului
mare de legaturi pe care sistemul le are cu mediul exterior. Drept necunoscute sunt
considerate reactiunile si dupa determinarea lor pot fi rezolvate prblemele. Din
aceasta categorie fac parte grinzile drepte asezate pe mai multe reazeme, cu sau
fara Incastrari, bare cotite, cadre, bare curbe, grinzi cu zabrele etc.

b) sisteme cu nedeterminari interioare, caz in care eforturile din sectiunile
transversale nu pot fi determinate cu ajutorul metodelor de calcul ale staticii, cu
toate ca valorile reactiunilor exterioare pot fi determinate pe baza ecuatiilor de
echilibru cunoscute din statica. Nedeterminarea, in acest caz, este datorata, pe de o
parte, formei Inchise pe care o are sistemul, iar pe de alta parte, legaturile rigide
existente Intre bare, aspect care fac imposibila determinarea eforturilor sectionale,
cu metodele de calcul ale staticii. Acest tip de nedeterminari pot sa se dezvolte in
cazuri precum: cadre inchise, inele, grinzile cu zabrele cu bare suplimentare etc.

c) sisteme cu nedeterminari exterioare si interioare, caz In care exista o
combinare a celor doua situatii de la punctele ,a” si,b”.

Orice problema static nedeterminata, indiferent de natura nedeterminarii este definite
de ,gradul de nedeterminare”. Gradul de nedeterminare este definit a fi egal cu diferenta
dintre numarul necunoscutelor si numarul ecuatiilor de echilibru static aplicabile structurii
analizate.

Toate marimile care nu pot fi determinate din ecuatiile de echilibru static sunt definite
a fi ,mdrimi static nedeterminate”.

Observatie: Numdrul mdrimilor static nedeterminate este egal cu gradul de nedeterminare al
sistemului.

Operatia de determinare a marimilor static nedeterminate este denumita ,ridicarea
nedetermindrii”.

Practic, oricare dintre marimile necunoscute poate fi considerata a fi marime static
nedeterminata.

Astfel, in cazul sistemelor cu nedetermindri exterioare legaturile exterioare
suplimentare sunt inlocuite cu reactiunile static nedeterminate, In timp ce, In cazul sistemelor
cu nedeterminari interioare sunt inlaturate legaturile interioare suplimentare, considerandu-
se bara sistemului sectionata pe portiunea static nedeterminata fiind evidentiate eforturile
interioare static nedeterminate.

Ridicarea nedeterminarilor se bazeaza pe doua grupe de conditii:

a) pe conditii de legatura scrise in dreptul si pe directia marimilor static
nedeterminate, exprimate prin deformatiile geometrice (sageata sau rotirea nule),
1n cazul sistemelor cu nedeterminari exterioare;
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b) pe conditii de continuitate ale fibrei medii deformate, scrise in dreptul si pe directia
marimilor static nedeterminate, exprimate prin conditia ca fibra medie deformata
sa fie o curba continua, in cazul sistemelor cu nedeterminari interioare.

Observatie: conditiile de legatura si de continuitate, folosite la rezolvarea problemelor static
nedeterminate, defines asa-numite ,ecuatii de echilibru elastic”.

Ca urmare, problemele static nedeterminate se rezolva folosind doua tipuri de ecuatii
de echilibru: echilibru static si echilibru elastic.

Tinand cont de cele de mai sus, se poate afirma faptul ca rezolvarea problemelor static
nedeterminate se poate face prin calculul unor deformatii (deplasari si/sau rotiri) in puncte in
care valoarea acestora este cunoscuta.

In concluzie, oricare din metodele cunoscute de calcul a deformatiilor poate fi folosita
la ridicarea nedeterminarii, prin aceste metode putiandu-se exprima ecuatiile de echilibru
elastic.

In analiza structurilor nedeterminate static se folosesc doua metode de baza:

» intr-una, structura este redusa la o stare statica determinata prin prin eliminarea
unui numar suficient de necunoscute pentru a permite determinarea reactiunilor.
In cadrul din figura 5.1, de exemplu, numarul de reactiuni de legitur ar fi redus la
trei daca una dintre legaturi ar fi fixata (ramane Incastratd), iar cealalta ar fi un
suport cu role. Acelasi rezultat ar fi obtinut daca o legatura ar ramane fixa, iar
celdlaltd legatura ar fi eliminata in intregime. Remodelarea unei structuri in acest
fel ar produce deplasari care altfel nu ar fi prezente. Aceste deplasari pot fi
calculate prin analizarea structurii determinate static. Aceastd metoda este, in
general, numita flexibilitate sau metoda de fortelor.

» procedura alternativa, cunoscuta sub numele de rigiditate sau metoda deplasarilor,
este similara cu metoda de fortelor, diferenta majora fiind ca necunoscutele sunt
deplasdrile in anumite puncte ale structurii. in general, procedura necesitd o
structurad care urmeaza sa fie impartita intr-un numar de elemente pentru fiecare
dintre care sunt cunoscute relatiile de deplasare. Ecuatiile de echilibru sunt apoi
scrise in termeni de deplasari ale legaturilor elementului si sunt rezolvate din
deplasarile necesare.

Atat In cazul metodei flexibilitatilor cat si in cazul metodei rigiditatilor, pentru
structuri cu un grad ridicat de nedeterminare statica, se obtin un numar mare de ecuatii, care
sunt cel mai usor rezolvate prin tehnici bazate pe calculator.

5.2. Metoda fortelor sau a flexibilitatilor

5.2.1. Consideratii teoretice

Este considerat un cadru complex (figura 5.2) care este incarcat cu un set de forte
(E.,i :1,n). Sistemul este determinat static, iar forma sa se schimba ca urmare a actiunii

fortelor.
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Figura 5.2

Deplasarea intr-un punct k" este consideratd a fi A, si valoarea sa depinde de nivelul
si punctul de aplicare a fortelor:

A=A (F,,F,,...,F,) (5.2)

n

Avand in vedere principiul superpozitiei, deformarea A, pot fi descrise de o relatie ca:

A, =0, F, +0,,F,+0,,F;+..+ 6, F (5.3)

kn” n?

unde §ki(i:ﬂ) sunt coeficientii de influenta.

Intelesul coeficientilor de influentd se poate explica pe baza relatiei (5.3). In cazul in
care sistemul de incarcare este considerat a fi compus numai dintr-o singura forta egala cu
unitatea, de exemplu F | =1, atunci deformarea in punctual ,k” este:

A =6y, (5.4)
care poate fi inteleasa astfel: coeficientul 6,; este deplasarea punctului k" in directia A,

atunci cand se aplicd o singurd fortd (sarcind) egald cu unitatea in loc de forta F, .

Indexul care defineste coeficientul de influenta au urmatorul inteles:
» Primul index, ,k”, defineste atat pozitia, cat si directia deplasarii;
» Al doilea index, ,j”, defineste sarcina unitara care produce deformarea.

In cazul unui sistem complex de bare (sisteme de cadre), coeficientii de influenta pot fi
calculati utilizand relatia Mohr-Maxwell:

5= g i Xy

(5.5)

E

Din relatia (5.5) rezulta teorema reciprocitatii deplasarilor:
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5y =06, (5.6)

J

care exprima faptul ca deplasarea in punctul ,k” in directia A, , produsa de o forta unitara
aplicatd in punctual ,j”, in locul fortei F,, este egala cu deplasare din punctul ,j*, pe directia lui

Fj, produsa de aceasi sarcind aplicata in punctual , k", pe directia lui A, .

5.2.2. Sisteme static nedeterminate

Sa considera sistemul nedeterminat din figura 5.3. Gradul nedeterminat este ,n”.
Sistemul este modificat Intr-unul echivalenta prin inlocuirea legaturilor suplimentare interne
si externe cu sarcinile statice nedeterminate X,,X,,..., X, .

Figura 5.3

Avand in vedere conditiile de limita si de continuitate, deplasarile si rotatiile punctelor
de legatura sunt egale. cu zero:

A, =0;A,=0;A,=0;..;A,=0; (5.7)

Luand in considerare principiul superpozitiei si relatia (5.3) o deplasare este rezultatul
actiunii tuturor fortelor, necunoscut (reactiuni) X,,X,,..,X, si a fortelor cunoscute

n

( Fl.,i:ﬂ) . Ca urmare, folosind ecuatiile (5.3) si (5.7) rezulta urmatorul sistem de ecuatii:

A =0, X, +0,X,+.+0,,X, +A1F1 +A1F2 +.t+A =0;

A, =0, X, +6, X, .t 0y, X, + 8y, Ay +ot Ay =0; (5.8)

A =6,X,+6,X,+.+0 X, +Am,1 +AnF2 +..+ AnFn =0;
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Numarul de ecuatii de la (5.8) este egal cu numarul de valori necunoscute (adica este
egal cu gradul de nedeterminare statica a structurii).

Pentru structurile care au un grad ridicat de nedeterminare statica, determinarea
solutiilor sistemului (5.8) este dificila, calculul acestora fiind mult mai facil cu calculatorul
electronic.

Dupa cum se poate observa pentru determinarea valorilor necunoscute, este necesar
sa se calculeze coeficientii de influenta o,; .
Trebuie facute unele observatii cu privire la acesti coeficienti:
» Acestia sunt numiti ,coeficienti directi" in cazul in care indicii sunt k=j,
,coeficienti secundari” daca indicii sunt diferiti, k# J;
» ,coeficientii directi” au tot timpul valori pozitive;
» ,coeficientii secundari” pot avea valori positive sau negative precum si zero.
Termenul liber A,., care reprezinta deplasarea in punctual ,k” cauzata de fortele
aplicate sistemului poate fi calculata folosind relatia lui Mohr-Maxwell:

Nn Tt M, m M, m
A, = k. dx + Ia—" dx+ J—b bk dlx + j—t % dx 5.9
o ZI EA Z GA Z El, Z Gl, )

Concluzii

In absenta oricdrei sarcini cauzatd de variatia temperaturii, sistemul (5.8) este
scris sub forma:

D 5y X, + Ay =0,(k=1,23,..,n) (5.10)
j=1

Pe baza relatiei (5.8), relatia (5.10) poate fi rescisa in forma matriceala:
[8]{x}+{a,}={0}, (5.11)

unde [ 8 ] este matricea deplasarilor unitare:

511 512 5111
Sy Oy o O

[8]=| 7 7 o, (5.12)
81 Oy - O

iar { X} este vectorul valorilor necunoscute:
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{X}=¢"7", (5.13)

(A} =171 (5.14)

Procedura de gasire a valorilor necunoscute este definita de urmatorii pasi:

1.
2.

Exemplul 5.1

se determina gradul de nedeterminare al sistemului;

se aleg valorile neconoscute care se doresc a fi calculate (forte si/sau momente)
care urmeaza a fi determinate;

se considera sistemul istemul determinat obtinut din sistemul initial prin
inlaturarea legaturilor pe directia fortelor/momentelor necunoscute obtinandu-
se sistemul static de bazda;

pe sistemul static de baza se introduc, pe rand, forte sau momente unitare in
punctele si pe directiile fortelor sau momentelor necunoscute;

se calculeaza coeficientii de influentd datl de fortele unitare &, ;

pe sistemul static de baza se considera fortele externe reale si se calculeaza
termenii A, (k=1,2,3,..,n);

se scrie sistemul de ecuatii (5.10);
se rezolva sistemul de ecuatii (5.10).

Se considera sistemul din figura 5.4 incastrat in punctual A si articulat in punctul B. Se
pune problema ridicarii nedeterminarii sistemului.

C O, D C D
a T a

3a EIZ=/3a

Al B Al B Al . —>If

AN\ | =i MY ) N | A

Figura 5.4
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Rezolvare:
Pasul 1: se calculeaza gradul de nedeterminare;

Sistemul este de doud ori static nedeterminat: 5 necunoscute (X,,Y,,M,,X;,Y;) si
numai 3 ecuatii de echilibru static independent. Ca urmare gradul de nedeterminare este:

N = numdrul necunoscutelor (5) - numdrul ecuatiilor de echilibru static (3) = 2

Pasul 2: se aleg necunoscutele care se doresc a fi determiante; se aleg, in acest caz reactiunile
Xy siYy;

Pasul 3: se considera sistemul static determinat obtinut din sistemul initial la care s-au taiat
legaturile In care actioneaza cele doua forte alese X, si Y, (figura 5.4,b);

Pasul 4: in locul necunoscutelor X, si Y, se introduc, pe rand, fortele unitare (figura 5.4, c);

Pasul 5: se calculeaza coeficientii J,; cu relatiile

_ mlml _ _ mlmz _ mzmz
511_ZI o dx,512—521—z.[ o dx,522—ZI R

Pasul 6: se calculeaza termenii A, : A, A,

Pasul 7: se rezolva sistemul de ecuatii (5.10).

Exemplul 5.2

Se considera grinda din figura 5.5 Incastratda in punctul B si simplu rezemata in
punctul A se cere sa se determine reactiunile care apar ca urmare a incarcarii grinzii cu o
forta distribuita, de intensitate constanta q pe toata lungimea |.

AYYYYYYYYYYYY (VV#(V (YYYYVYYYYYY

Xp

Y4 Y

Figura 5.5
Ca urmare a sistemului de legaturi, asupra grinzii actioneaza urmatoarele reactiuni:

e Inreazemul din punctul A4 o forti de reactiune Y,

e Inincastrarea din B treireactiuni X;, Y, si M;.
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Din capitolul de Statica de la Mecanica se cunoaste faptul ca pot fi scrise un numar de 3
ecuatii, independente, de echilibru:

D x=0
PREL
D m=o.

Ca urmare, gradul de nedeterminare este:

n = nr. necunoscutelor (4) — nr. ecuatiilor de echilibru (3) =1

Pentru ridicarea nedetermindrii se alege una din cele 4 necunoscute pentru a fi
calculate. Trebuie specificat faptul ca, din ecuatia de echilibru de pe directia axiala rezulta ca
forta X, =0 (nu exista incdrcare pe aceasta directie).

Problema ramine static nedeterminata deoarece raman necunoscute fortele Y, si Y,

precum si momentul M, iar numarul ecuatiilor independente ramase este de 2.

Se alege sa se determine reactiunea din A. Pentru determinare se porneste de la
conditia geometrica v, =0 deoarece in reazem deplasarea este zero.

In continuare se prezinti ambele metode de calcul: metoda Castigliano si metoda
fortelor (Mohr-Maxwell).

a) Metoda Castigliano

M, oM,
Relatia de calcul a sagetii in punctul A este: Va = z j EI ZY '

unde M, este momentul de incovoiere pe fiecare interval considerat, de lungime /. Fiind un

1

singur interval se va scrie momentul Incovoietor la distanta x de punctul A.

Interval M, oM, Limite
oY,
A+B 2 X 01
YAX _ qi
Ca urmare:

2 y 3 3 4
Zj IYX_ﬁ L T AR
EI 2 EIZ0 2 EI 3 8
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sau

de unde:

Y, = %ql =0,375¢l.

b) Metoda fortelor (Mohr_Maxwell)

In cazul acestei metode in primad fazi se alege necunoscuta care se doreste a fi
determinate. Dupa alegerea necunoscutei se construieste Sistemul Static de Baza (SSB)
realizat din sistemul initial la care se ,rupe” legatura in care este necunoscuta care se doreste
a fi calculata. Alegand tot forta Y, se ,rupe” legatura din A rezultand SSB din Figura 5.6.

Figura 5.6

In continuare, pe SSB se pun, pe rand, incircarea reali (figura 5.7) si o forta unitara 1
in punctul si pe directia reactiunii ce urmeaza a fi determinata (figura 5.8).

A rWMMMWMMWWMi

Figura 5.7

Figura 5.8
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Se vor scrie momentele reale de Incovoiere M, pentru incarcarea din figura 5.7 si

momentul incovoietor unitar m,, pentru incarcarea din figura 5.8. Calculul deformarii in

punctul A tine cont ca valoarea deplasarii este zero (v, =0) si se face pe baza ecuatiei:

0, X, +A,; =0

unde X, =Y, reprezintd necunoscuta, o, reprezinta factorul de influenta al reactiunii Y, (cu

cat influenteaza reactiunea Y, deplasarea din punctul A) iar A,, reprezinta influenta pe care

o are incarcarea reald asupra aceleiasi deplasari din punctul A.

Pe baza figurilor 5.7 si 5.8 se scriu urmatoarele relatii pentru cele doua momente:

Interval

Limite

A=+B

0-+1

Factorii de influenta se calculeaza astfel:

l
_ My My L LJ- X
5, Z'!. 5 dx B (1x)(1x)dx

1

0

1

I
_ MiF Tmy — LJ. _q_xz S
Ay = Z-O[ . dx B [ 2 j(lx)dx

0

" 3EL

3 1

4

ax
8EI

0

13
3El

, OEI

Inlocuind factorii de influenti in ecuatia deformarii in punctul A rezult;

din care rezulta:

Exemplul 5.3

YA

=§ql =0,375¢l.

4

Se considera cadrul din Figura 5.10 de sectiune constanta, circulara ( EI, =ct.), Incastrat In

punctul B si rezemat In punctul A. Se cere sa se ridice nedeterminarea.

Rezolvare

Ca si in problema precedent, exista 4 necunoscute:

e Inreazemul din punctul A o forti de reactiune Y, ;

e Inincastrareadin B treireactiuni X,, Y, si M.
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lp
@ 2a Ja A

ig .
£
¥Ya

4
b
E”

3F

Figura 5.10

Reactiunea X poate fi determinate din ecuatia de echilibru static:
> x=o0,
din care rezulta X,=-3F .

Ca urmare, raman 3 necunoscute: fortele Y, si Y, precum si momentul M, iar numarul
ecuatiilor independente ramase este de 2, sistemul fiind o data static nedeterminat.

Se alege ca necunoscuta ce urmeaza a fi calculate, forta Y, .

a) Metoda Castigliano
1
A M. oM.
Relatia de calcul a sagetii in punctul A este: v, = Z ——Ldx,
) El 0Y,
unde M, este momentul de incovoiere pe fiecare interval considerat, de lungime I.

Se porneste din punctul A, se scrie momentul incovoietor pe fiecare tronson in parte,
se deriveaza In raport cu Y, si se introduce in formula de calcul a sagetii din 4 (v, ).

Interval M, oM, Limite
or,

A+Q® Y, x X 0+3a

®+@ Y,(3a+x)-Fx 3a+x 0+2a

@+0 Y,-5a—-F-2a 5a 0+4a

®+B Y,-5a - F-2a - Fx S5a 0+4a
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Pe baza datelor din tabel, avem:

l
M, oM,
vV, = —L—1dx =0,
A Z ) E1, 0Y,

sau:
3a 2a 4q 4q
Y Y, (Ba+x)}Fx Y,-5a - F-2a Y,-5a — F-2a — Fx
VA:J.LXxdx+J‘[ al ) ](3a+x)dx+J.( 4 )Sadx+j( 4 )Sadx:
El EL El El
0 0 0 0
el 2 X8 8 F x* X * o5ePy ta 4 25a%Y, ja
= A" | + A9 +6a—+— | ——|3a=—+=—| + 4 x| " ~10Fa’*x| + A x| "~
EI, 3|, EI 3 ), EL 2 3) 0 EL " 0 o
10a°F e 5aF x*[" 1 (7254°. 386d°
- P Y, - Fl=0
EIl, " EI 2| EL|\ 3 3
Ca urmare, reactiunea:
v, =38k _0,532F .
725

b) Metoda fortelor (Mohr_Maxwell)

In cazul acestei metode in primi fazd se alege necunoscuta care se doreste a fi
determinate. Dupad alegerea necunoscutei se construieste Sistemul Static de Baza (SSB)
realizat din sistemul initial la care se ,rupe” legatura in care este necunoscuta care se doreste

a fi calculate. Alegind tot forta Y, se ,rupe” legitura din A, rezultind SSB din figura 5.11.

@) A

B
AIAIAIAAIAY,

Figura 5.11
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In continuare, pe SSB, se pun, pe rand, incircarea reald (Figura 5.12) si o fortd unitara
1 in punctul si pe directia reactiunii ce urmeaza a fi determinata (Figura 5.13).

Se vor scrie momentele reale de incovoiere M,., pentru incarcarea din figura 5.12 si
momentul incovoietor unitar m,, , pentru incarcarea din figura 5.13.

Calculul deformarii in punctul A tine cont ca valoarea deplasarii este zero (v,=0) si se
face pe baza ecuatiei:

o X, +A,; =0
unde X, =Y, reprezintd necunoscuta, J,, reprezinta factorul de influenta al reactiunii Y, (cu

cat influenteaza reactiunea Y, deplasarea din punctul A) iar A,, reprezinta influenta pe care
o are Incarcarea reala asupra aceleiasi deplasari din punctul A.

2a 3a 2a 3a
@ A @ A
<A v A ©
| I Y, Voo 1
S X Xy s X X
3F
V_g |
S ]
< <+
B B
AAAAAAAAAIA, APHAAAAAIAL
Figura 5.12 Figura 5.13

Pe baza figurilor 5.12 si 5.13 se scriu urmatoarele relatii pentru cele douda momente:

Interval M, m, Limite
A+D 0 1-x 0+3a
®+0 —Fx 1-(3a+x) 0+2a
@+0 —F-2a 1-5a 0+4a
®+B —F-2a - Fx 1-5a 0+4a
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Factorii de influenta se calculeaza astfel:

3a

Ou = ij 11 I(lx)(lx)d“—_[ [1-Ba+x)][1- (3a+X)]dx+—ISa 5adx+
Z0
4a 3 3a 2 3 2a ;
+LJ‘5a-5adX:i X4 9g2x+6a°—+% +2502X|4a 4a :72561
E, EL,| 3], 2 3), 0 3EL
Aur Zj gy ——IO (1x)dx +—I (—Fx)-1-(3a+ x)dx+EL.. (—2Fa)-1-5adx+

z

2a 4a

10Fa’x|" 10Fa’x|" 5Fax’[" 386Fd’

2 3
+LJ (—2Fa—Fx)-1-5¢1dx:—i 3¢5+ X
Bl EL\" 2 3

. EL | EL | EL 2|  3EI
Introducand valorile de mai sus in ecuatia: 0,,X, + A, =0, obtinem:
3 3
725a X, - 386Fa” _ 0,
3EI 3EI,
de unde rezulta: X, =Y, =%F 0,532F.

Exemplul 5.4
Se considera sistemul de bare din figura 5.14 la care se cunosc: o,=160MPa, A=100mm®*,
[=1000mm si E=2,1-10° MPa. Se cere si se determine:

a) fortele din cele 5 bare (N,, N,, N;, N, si N);

b) forta capabila F,,, din conditia de rezistentd la tractiune/compresiune (o, <o, );

c) deformarea barelor.

Bara Aria Lungimea Modulul de elasticitate longitudinal
1 A l E
2 A l E
3 2A l E
4 A l E
5 A l E
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A
(A
Figura 5.14

Rezolvare:

a) in fiecare din barele sistemului, urmare a incarcarii din punctele B si C, apar forte
axiale de reactiune: N,, N,, N;, N, si N, (figura 5.14).

Considerand cele cunoscute din Mecanic3, in punctele B si C pot fi scrise ecuatiile de
echilibru static rezultand faptul ca sistemul este o data static nedeterminate (figura 5.15):

Figura 5.15
e Pentru sistemul din figura 5.15,a:

ZX =0; N,cos60" + N,cos60° + N, = 2F;

D Y =0; N,sin60’ - N,sin60° =0;
e Pentru sistemul din figura 5.15,b:

D X=0; N,cos60" +N;cos60" ~N, = 2F;

D Y =0; N,sin60" - N;sin60" = 0;
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Se alege drept mdrime static nedeterminata care urmeaza a fi gasita forta din bara ®,
N,. Ca urmare, ecuatia prin care se determina necunoscuta va fi:

03, X; + A, =0

unde componentele sunt:

nnlll Nin, 1

Pentru inceput, pe sistemul de baza se introduc, in punctele B si C, forte unitare
(n,,=1) pe directia necunoscutei N, (figura 5.16) si se calculeaza componentele: n,,, n,,, n,

S1 Mgy 5

Figura 5.16

e Pentru sistemul din figura 5.16,a:

Z X =0; n;,cos60 +n,, cos60’ +n,, =0;
D Y =0; n,sin60" —n, sin60" = 0;

de unde rezulta: n,, =n,, =-1;

e Pentru sistemul din figura 5.16,b:

Z X=0; n,cos60" +n,, cos60’—n,, =0;
D> Y =0; n,sin60" —ng, sin60" =0;

de unde rezulta: n,, =n;, =1;

Pe sistemul static de baza se introduce incarcarile reale rezultand in bare fortele de
reactiune: N,., N,., N, si N, (figura 5.17)

1F?’ 2F
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____________ I

)60°2
Y o CEE R >
X X
a) b)
Figura 5.17
e Pentru sistemul din figura 5.17,a:
D> X=0; N, cos60" + N, cos60’ = 2F;
D> Y=0; N,sin60" - N,,sin60" =0;
de unde rezulta: N,, =N,, =2F
e Pentru sistemul din figura 5.17,b:
D> X=0; N, cos60 + Ny, cos60" =F;
D> Y=0; N,.sin60" - N,,sin60" =0;
de underezulta: N,, =N, =F
In continuare se calculeazi componentele ecuatiei:
2 2 2 2 2 2
531=Zni1ni11i :znnli =( 1) l+ (-1) I+(1) I+(1) I+(1) I: 9l
E.A EA EA EA 2EA  EA EA  2EA

3F

E.A EA EA EA EA EA
Se rezolva ecuatia: % 5 — 2—2 =0,
de unde rezulta: N, =X, = %
si apoi: N1=N2=% si N4=N5=g
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b) Se calculeaza tensiunile effective pentru fiecare bara in parte:

94 .100-
o =0, = 5 deunderesults:  F<24% 9100160450501
94 14 14
94 -100-
o, =0, = <5 deunderemilts:  F< A% 91001604, 600 9o
94 14 13
94 .100-
o, =X < 5, de unde rezults: p< 249 9100160 _ 50 600
94 4
Din analiza valorilor de mai sus, se alege pr =10.285,71N.
c) Alungirile celor cinci bare sunt:
Al = Al = N\ _ Nyl, 14F1 _ 14-10.285,31-1000 0,762 mm
EA, E,A, 9EA 9-2,1-10°-100
Al = Al = N, _ Ngls 13F1 _ 13-10.285,Zl~1000 — 0,820 mm
E,A, EA 9EA 9-2,1-10°-100
_NJ, 4Fl 4-10.285,71-1000 — 0,108 mm

" E,A, 9E2A  9-2,1-10°-2-100

Exemplul 5.5

Se considera sistemul de bare din figura 5.18 la care se cunosc: A=600mm?*, 1=1000mm si

E=2-10° MPa, F=100kN . Una din bare este mai scurti cu o cantitate §=0,3 mm. Se cere si
se determine:

a) fortele din cele 3 bare (N,;, N,; si N,;) dezvoltate urmare a prinderii barei mai
scurte de articulatie;

b) fortele din cele 3 bare (N;, N, si NJ ) dezvoltate urmare a aplicarii fortei F;

c) fortele totale finale.
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30°

Rezolvare:

450 ®

F

Y

Figura 5.18

a) Se considera cazul in care forta F nu este aplicata si se anuleaza imperfectiunea barei
®. Ca urmare, in cele trei bare se vor dezvolta fortele axiale: N5, N,5 si N

(figura 5.19).

Figura 5.19

Aplicand ecuatiile de ecbilibru scrise in nodul B rezulta:

D X=0; N,;sin30"=N,,sin45’;
Z Y=0; N,;c0s30"+N,5cos45 +N,;=0.

Asa cum rezultd, existd un numar de doua necunoscute (fortele din bare N

150 Nps sl

N,;) putandu-se scrie numai doua ecuatii de echilibru static. Ca urmare, sistemul este o data

static nedeterminat.
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Se alege ca necunoscutd ce se doreste a fi determinate forta N,; din bara @. Tinand

cont de deformarea sistemului se poate scrie ecuatia:
0, X, =0
Alegand ca necunsocuta forta N,; sistemul static de baza devine cel din figura 5.20,a

obtinut prin ,tiierea” barei ®. In punctul B pe directia fortei necunoscute N, se introduce o

forta unitara n;, =1 si se determina fortele unitare n,, si n,; :

ZX:O; n,,sin30"=n,, sin45’;
Z Y=0; n,, cos30° +n,, cos45" +n,, =0.

45° ®
¢ |4
B
a) b)
Figura 5.20
1 2

Din prima ecuatie rezulta: 5 n, :gnm ,
de unde obtinem: n,, =0,707.
Din a doua ecuatie se obtine: n,, =—n,, cos30°—n,, cos45 =-1,573.

Tindnd cont de geometria sistemului, lungimile celor trei bare sunt:

|
11 = .
cos30

=1,1541, I, =1, I, =12 = 1,4141

Pe ba za celor de mai sus, se obtine:

3 2
Sy =Y L é[f 1,154+(-1,573)°-1+0,707°-1,414 |= 4,3351
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Inlocuind in ecuatia de echilibru elastic, rezulta:

5 O6-E-A 0,3-2-10°-600
X =N = = 43350 4.335.1000
4,335, 335,

1

=8.304,49 N

Din ecuatiile de echilibru obtinem:

SIN30_ 5873 05N si N, =—N,, cos30" - N, cos45’ = ~11.343,93 N
sin45° ’

N

35 —

N

Pe baza fortelor axiale determinate mai sus, tensiunile din fiecare bara vor fi:

N .
o, = s _ 830049 _ 15 04 mpg,
A 600
N,, -11.
o, =N - TH34393 g 90 ypg
A 600
N,, 5.
o,y = i _ 3B73.05 _g 59 4pg
A 600

b) Dupa compensarea imperfectiunii de montaj se aplica forta F.

Ca si In situatia precedent, In cele trei bare apar forte de reactiune, sistemul fiind static
nedeterminat. Se considera acelasi sistem static de baza confiderandu-se drept marime
necunoscutd care se doreste a fi determinate forta din bara ® (N,, ). Sistemul este prezentat

in figura 5.21.

Figura 5.21

Din scrierea ecuatiilor de echilibru in nodul B, rezultand: N,, = F; N,, =0, N,, fiind egald cu zero.

Ecuatia de calcul a metodei fortelor este:
0,X, +A,;=0
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Componntele acestei ecuatii fiind: X, = N, - forta din bara ©®

3 2
Sy =Y L é[f 1,154+(-1,573)°-1+0,707"-1,414 |= 4,3351

N,n,l.  F(-1,573)] 0(0,707)1,4141 1,573FI
A = Z = + =-
EA EA EA EA

Ca urmare, forta care apare in bara @ va fi egala cu:

4,3351 ¥ 1,573Fl=

1 0,
EA EA
de unde rezult: X, =NF= 1'53733 5F —0,362F=36.277,6 N

Celelalte doua component de din barele @ si ® se determina cu relatiile:
NI =N, +ny,X, =F —1,573-0,362F = 0,43F = 43.057,4 N
NI =N,, +n, X, =0+0,707-0,362F = 0,256 F = 25.600 N

Tensiunile care se dezvolta vor fi:
_N{ 36277,6

o\ — 60,46 MPa,
A 600
F
oy = o B30T _ 5y 70 ypg,
A 600
F
o, = s 25600 _ 45 60 mpa.
A

c) Fortele totale din cele trei bare vor fi:

N, =N,, + N' =8.304,49 N +36.277,6 N = 44.582,09 N
N, = N,,+ Nf =—11.343,93 N + 43.057,4 N =31.713,47 N

N, = N,, + NI =5.873,05 N + 25.600 N = 31.473,05 N
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Corespunzator acestor forte, tensiunile normale rezultante, din bare, sunt:

44.582,09

N

o, =L ="22"%77 _ 74,303 MPa,
A 600
N .

o, =Ne _LTISAT _ o) 655 Mpa,
A 600
N .

o, =N 3147305 _ o) 455 mpy.
A 600

Exemplul 5.6
Se considera sistemul de bare din figura 5.22 la care se cunosc: barele sunt de aceeasi sectiune
A=400mm?, lungimea [=1500mm, E=2-10° MPa, 0,=120MPa . Se cere sa se determine:
a) fortele din cele 3 bare (N,, N, si N,) dezvoltate urmare a prinderii barei mai scurte
de articulatie;
b) forta capabila F,,, din conditia de rezistenta (o,,,, <o, );

c) deplasarile pe orizontala u, si pe vertical v, ale punctului B.

Figura 5.22

a) Din scrierea ecuatiiloe de echilibru in nodul B rezulta:

D X =0; —N,sin30"+ N,sin30"+ N, sin60"= 0;
ZY:O; N, cos30"+ N, cos30"+ N,cos60’ = F;

Din ecuatiile de echilibru rezulta ca exista trei necunoscute N,, N, si N, si doua ecuatii
de echilibru. Ca urmare, sistemul este static nedeterminat.

Se alege ca marime necunoscute care urmeazad a fi determinata forta N,, din bara @. Se
considera faptul ca deplasarea in articulatia din punctual D este zero si se scrie ecuatia:
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0, X, + A, =0,

in care, X, = N,, iar componentele 6,, si A,, vor fi determinate cu jutorul Sistemului Static de
Baza (SSB).
Considerand ca mdrime necunoscutd, care urmeaza a fi determinate, forta N,, SSB se

obtine din sistemul initial la care se ,rupe” legatura necunoscutei, adica este inlaturata bara
@ (figura 5.23).

>
<

— e e, e e — == -

Figura 5.23

In continuare, pe SSB vor fi aplicate, pe rand, o forti unitard in nodul B, pe directia
fortei N, (figura 5.24,a) siforta F (figura 5.24,b).

Figura 5.24

Scriind ecuatiile de echilibru corespunzator sistemului de forte unitare din
figura 5.24,a rezulta:
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ZX =0; -n,,sin30" +n,,sin30° + n,; sin60" =0;
ZY =0; ny,cos30° +n, cos30" + n,, cos60” = 0;

sau
D X=0; —0,5:n,,+0,866-n,,=-0,5;
> Y=0; 0,866-n, +0,5n, =-0,866;

rezultand valorile:
n,=-05,n, =1, n, =-0,866

Scriind ecuatiile de echilibru corespunzator sistemului de forte din figura 5.24,b
rezulta:

> X=0; —N,;sin30° + N, sin60° =0;
>Y=0; N,;rcos30" + N;zcos60° =F;

sau
ZXzO; —0,5-N,+0,866- N, =0;
ZY =0; 0866-N,; +05:-N;. =F;

rezultand valorile: N, =0866F, N, =0, Ny, =0,5F

Lungimile celor trei bare sunt:

! =1,1541, I, =;°:21;
cos60

L= =
12 cos30°

Coeficientii din ecuatia de echilibru elastic sunt:

w1 (-05)-1,1541 (1) -1,154] (-0,866) 21 2,942]
21 ZZ —— + + =
EA, EA EA EA EA

A=Y Nynyl, _0,866F-(~0,5)-1,154] 0-1-1,154] 0,5F-(-0,866)-21 __1,365F
EA EA EA EA EA

2F

Introducand coeficientii de mai sus in ecuatia de echilibru elastic, rezulta:

2,9421X ~1,365F1 _

0
EA * EA

167



REZISTENTA MATERIALELOR SISTEME STATIC NEDETERMINATE

din care se obtine:
X,=N,=0,464F

Celelalte douda component de din barele @ si ® se determina cu relatiile:

N, =N,, +n,X,=0,866F —0,5-0,464F = 0,634 F
N, =N,, +n, X, =0,5F —0,866-0,464F =0,098F

b) In continuare, se scrie conditia de rezistenta pentru fiecare bara, in parte:

o, = Ny _0.634F <o,,deunderezulta: F,k <1,5770,A
A A P

o, = N, _0.464F <o, deunderezulta: F, <2,1550,A
A A :

o, = % _ O’OZSF <o, de unde rezults: F, <10,2040,A

rezultand: K, <15770,A=1,577-120-400 =75.696 N

c) Pentru determinarea deplasarilor punctului B se vor introduce forte unitare pe SSB,
pe diretiile orizontala, pentru u, (figura 5.25,a), si vertical, pentru v, (figura

5.25,b).

Figura 5.25

Se calculeaza noile valori pentru fortele unitare din cele doua bare @ si 3.
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Scriind ecuatiile de echilibru corespunzator sistemului de forte unitare din
figura 5.25,a rezulta:

D X=0; —n,sin30" +n,,sin60" +1=0;
ZY =0; n;,cos30° +n,, cos60’ =0;

sau
D X=0; —0,5-n,,+0,866-n,,=—1;
> Y=0; 0866-n, +0,5n, =0;

rezultand valorile:
n, =05 si n;, =-0,866

Deplasarea pe orizontala a punctului B este egala cu:

i1

EA EA EA EA

Nn.,l 0,634F-0,5-1,154] 0,098F-(-0,866)-21 0,196FI
uB = Z = =+ =

Inlocuind cu valori numerice, se obtine:

. 0,196-75.696-1.500
B 2-10°-400

=0,278 mm

Scriind ecuatiile de echilibru corespunzator sistemului de forte unitare din
figura 5.25,b rezulta:

D> X=0; —n,sin30" +n,, sin60" =0;
ZY =0; n;;cos30° +n, cos60” =1;

sau
> X=0; -0,5:n,,+0,866-n,,=0;
D Y=0; 0866-n,+0,5n, =1

rezultand valorile: n,, =0,866, n,; =0,5

Deplasarea pe orizontald a punctului B este egala cu:

Vp =

ZNinilli _0,634F-0,866-1,1541 _0,098F-0,5-2I _ 0,731FI
EA EA EA EA

Inlocuind cu valori numerice, se obtine:
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~0,731-75.696-1.500

vy c =1,037 mm
2-10°-400

Observatie:

Prin aplicarea fortelor unitare, in punctul B, intr-un anumit sens s-a presupus ca deplasarea
ar fi in sensul respective. Ca urmare, daca valoarea obtinuta este pozitiva concluzia este ca
deplasarea este in sensul fortei unitare aplicata.

Deplasarea totala a punctului B este:

Ay =\Jud +v2 =40,278% + 1,037 =1,073 mm
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STABILITATEA STATICA
A BARELOR DREPTE
ZVELTE

6.1. Introducere

Elementele structurale care sunt incdrcate cu sarcini de compresiune
pot fi impartite In doua tipuri, In functie de lungimile lor relative si de
dimensiunile transversale:

a) Bare scurte si groase, definite drept coloane care, de obicei, se
distrug prin zdrobire atunci cand tensiunea admisibilda de
compresiune a materialului este depasita;

b) coloane lungi si subtiri sau tije care cedeaza si flambeaza cu putin
timp Tnainte de a fi atinsa tensiunea admisibila de compresiune.

Barele foarte lungi si de sctiune mica (subtiri) sunt definite a fi bare
zvelte. In cazul barelor zvelte, sub actiunea fortelor de compresiune, acestea
pot sa-si piarda forma initiala de echilibru. Forma de echilibru pe care o au
barele zvelte, sub actiunea eforturilor de compresiune poate fi stabila sau
inslabila. Stabilitatea/instabilitatea statica a barelor zvelte se refera la pozitia
deformata a unui sistem elastic ca stare de echilibru sub actiunea statica a
unor forte exterioare cunoscute.

O bara zvelta este stabild daca in pozitie deformata printr-o actiune
externa perturbatoare, aceasta se deformeaza mai mult dar revine la forma
initiala deformatd, cand actiunea perturbatoare inceteaza. Daca dupa actiunea
perturbatiei bara nu revine in pozitia initiald, atunci sistemul este instabil.

Pierderea stabililatii sistemelor deformabile (bare zvelte, placi etc.) sub
actiunea Incarcarilor se numeste flambaj.

Flambajul barelor zvelte poate avea loc din mai multe dintre
urmatoarele motive:

a) bara nu este perfect dreapta in pozitie initiald, de montaj;
b) Incarcarea nu este aplicata exact de-a lungul axei barei;
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c) in cazul barelor compuse din mai multe componente, realizate din
materiale diferite, este posibil ca materialul uneia din componente
sa aiba o tensiune admisibila inferioara celorlate si sa cedeze;

Pericolul cel mai mare in cazul fenomenulului de flambj il reprezinta
aparitia brusca a deformatiilor mari, aspect care pote avea ca si consecinta
directa ruperea barei.

Forma dreaptd — de echilibru

Forma flambatd

Figura 6.1

Se considera bara dreapta din figura 6.1 solicitata la compresiune de
fortele P. In bara se dezvolta tensiuni normale negative (o < 0) prezentand

pericolul dezvoltarii fenomenului de flambaj.

In cazul in care, forta Patinge o valoare egald cu forta critici de
flambaj P;, bara isi va pierde pierde forma dreapta de echilibru si flambeaza.

Bara se va incovoia aparand deformatii foarte mari (figura 6.1). Fortei critice
de flambaj 1i corespunde o tensiune critica de flambaj o, care se calculeaza

conform relatiei:

P

o, =—, 6.1
F = (6.1)

unde A este aria sectiunii transversale.

In cazul in care, asupra barei actioneaza o fortd P mai mica decét forta
critica de flambaj P;, atunci bara nu va mai flamba. Legdtura dintre incarcarea

P si forta critica de flambaj P, este data de coeficientul de flambaj ¢, prin

relatia:
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p="L (6.2)

Coeficientul de flambaj ¢, are valori supraunitare acestea fiind stabilite
in functie de periculozitatea pe care o au, in functionare, diferite tije
componente ale echipamentelor industriale si nu numai.

Valorile coeficientului de siguranta sunt cu atat mai mari cu cat piesele
au o importanta crescuta in asigurarea sigurantei in functionare.

Echilibrul unei bare drepte zvelte comprimate poate fi de doua feluri:

a) echilibru stabil, caz in care P < P, bara dupa deformare revenind la
forma initiala in momentul in care cauza perturbatoare inceteaza;

b) echilibru instabil P> P, bara ramane deformatd in momentul in
care cauza perturbatoare inceteaza;

Cel mai mare pericol al flambajului 1l reprezinta faptul ca se produce
brusc neexistand posibilitatea luarii in avans a unor masuri de prevenire.
Fenomenul se petrece in special la constructii metalice, de tip grinzi cu
zabrele, sau la sisteme de sustinere.

Pentru analiza fenomenului de falmbaj au fost elaborate elaborate o
serie de teorii aproximative pe baza carora sunt determinate marimile care
definesc starea de flambaj.

Calculul la flambaj se realizeaza scriind relatiile de echilibru pentru
starea deformatd, tindndu-se cont de conditiile de legatura ale barelor.
Calculul se realizeaza pe baza teoriei de ordinul II, caz in care se admite
expresia aproximativa a curburii.

6.2. Forta critica de flambaj a barei drepte solicitata la
compresiune

6.2.1. Consideratii generale

Relatia de calcul a fortei critice de flambaj, pentru o bara dreapta
comprimatd, a fost calculatd prima data de L. Euler (1744). Determinarea
acestei forte a fost realizata prin metoda statica.

Determinarea acestei forte tine cont de tipul de legaturi existente la
capetele barelor. Pornind de la considerente practice, provenite din realitatea
inconjuratoare, au stabilite patru cazuri de legaturi (figura 6.2):
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a) cazul 1 - bara incastrata la un capat si libera la celalalt

(figura 6.2,a);

b) cazul Il (caz fundamental) - bara articulata la ambele capete
(figura 6.2,b);

c) cazul Il - bara articulata la un capat si incastrata la celalalt
(figura 6.2,c);

d) cazul IV - bard incastratd la ambele capete (figura 6.2,a).

Metoda statica este o metoda analitica de determinare a fortei critice de
flambaj bazata pe ecuatia aproximativa a fibrei medii deformate:

dv _ M,
W = —E . (63)
din care rezulta:
2
M, =- EI%. (6.4)

Pornind de la aceasta ecuatie, prin integrare si considerarea conditiilor
de legatura de la capete (figura 6.2), pentru fiecare caz In parte, rezulta o
anumita forma deformata si o formula de calcul a fortei critice de flambaj.

|
N
7

Figura 6.2
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In calcule se admit urmitoarele ipoteze de calcul:
a) modulul de rigiditate EI este constant;

b) distanta dintre cele doua capete ale barei este aproximativ egala in
starea flambata cu lungimea initiala a barei;

c) greutatea barei este neglijata.

6.2.2. Cazul fundamental (cazul II - figura 6.2,b)

Se considera bara din figura 6.3 articulata la ambele capete la capete.
Bara este comprimata cu forta critica de flambaj P;.

Pr @ @ Pr

Figura 6.3

Urmare a actiunii fortei P, bara se va deforma intrdnd in stare

flambata. Ca urmare a actiunii fortei, la o distanta oarecare x, fata de
articulatia din punctul ©, bara se deformeaza foarte mult, valoarea sagetii
fiind v . Ca urmare, in punctul respectiv se va dezvolta un moment incovoietor

generat de forta Pf :
M =P v (6.5)

unde v reprezinta sageata, foarte mare, a deformarii barei.

Introducand relatia momentului de incovoiere din (6.5) In relatia (6.4)
rezulta ecuatia:

d*v
P..v=—El—,
f dXz
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de unde rezulta:

dv Py

L = g? (6.7)

si, ca urmare, ecuatia diferentiala (6.7) devine:

2

v 2
—+av=0, 6.8
0 (6.8)
avand solutia de forma:
v =Asin(a-x)+ Bcos(a - x) (6.9)

unde, A si B sunt doua constant care pot fi determinate din conditiile de
legatura din articulatiile ® si @:

(6.10)

x=0 = v=0;
x=l = v=0.

Pe baza conditiilor de legatura (6.10), pentru cele doua constante,
rezultd urmatoarele valori:

a) din prima conditie din (6.10) = B=0; (6.11)
b) din adoua conditie din (6.10) =  Asin(a-1)=0. (6.12)
Valoarea constantei A trebuie sa fie diferita de zero (A * 0), altfel

nexistand flambaj.

Ca urmare, rezulta ca pentru a fi Indeplinitda cea de-a doua conditie
(6.12) este necesar sa avem:

sin(a-1)=0, (6.13)
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care conduce egalitatea:
a-l=n-7 (6.14)

unde ,n” este un numar pozitiv, intreg.
Din relatia de egalitate (6.14) se obtine:

a="'T” (6.15)

iar din (6.7) rezulta relatia de calcul a fortei critice de flambaj:

(6.16)

Considerand in relatia (6.16) valoarea n=1 rezulta starea flambata din
figura 6.3.

”n

In relatia (6.16) pot fi considerate si alte valori pentru ,n
(n=2,3,4,...), rezultand alte forte de flambaj dar acestea nu se mai realizeaza

atata timp cat bara a flambat pentru forta critica de flambaj cea mai mica.

In relatia (6.16), I reprezinti momentul de inertie axial central al
sectiunii transversale care corespunde directiei fata de care flambeaza bara.

In cazul in care, conditiile de legitura ale barei sunt identice in jurul
tuturor axelor centrale ale sectiunii transversale, atunci in calcule trebuie
considerat momentul de inertie axial central minim al sectiunii transversale.

Flambajul se produce in jurul acelei axe centrale, fata de care bara
prezinta rigiditatea minima.

Ca urmare, relatia (6.16) de calcul a fortei critice de flambaj, in cazul
fundamental, devine:

P, == min (6.17)

In cazul fundamental starea flambati corespunde unei semiunde,
avand lungimea egald, cu aproximatie, cu cea a barei. Lungimea
corespunzdtoare unei semiunde, adica distanta dintre doua puncte
consecutive de inflexiune ale starii flambate, se numeste lungime de flamba;j.
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Ca urmare, lungimea de flambaj este egala cu lungimea barei, iar relatia
(6.17) va avea forma:

ﬂ-zEImin
Pf = 12
f

, (6.18)

unde, prin /; s-a notat lungimea de flambaj.

6.2.3. Cazul unei bare incastrata la un capat si libera la celalalt
(cazul I - figura 6.2,a)

Starea de incarcare si deformare, in acest caz, este prezentata in figura
6.4. Ca si In cazul precedent se ajunge la aceeasi ecuatie diferentiala (6.8) cu
solutia (6.9):

v =Asin(a-x)+ Bcos(a-x)

Figura 6.4
n acest caz, conditiile de legatura sunt:

x=0 = v=0;
dv (6.19)

x=l = —=0.
dx
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Pe baza conditiilor de legatura (6.19), pentru constantele A si B
rezulta urmatoarele valori:

a) din prima conditie din (6.19) = A=0; (6.20)
b) din a doua conditie din (6.19) =  Bcos(a-1)=0. (6.21)
Valoarea constantei B trebuie si fie diferitd de zero (B #0), altfel

neexistand flamba;j.
Ca urmare, In relatia (6.21) este necesar sa fie indeplinita conditia:

cos(a-1)=0, (6.22)
din care se obtine:
(2n-1)-7
a-l= — (6.23)

unde ,n” este un numar intreg, rezultand:

a= % (6.24)

Combinand relatiile (6.7) si (6.24), pentru n=1 obtinem:

7°El
= i 6.25
f 412 ( )
in acest caz, lungimea de flambaj fiind: [, =2I. (6.26)

6.2.4. Cazul unei bare incastrata la un capat si articulata la
celalalt (cazul III - figura 6.2,c)

Se considera bara din figura 6.5, articulata in punctul @ si incastrata in
punctul @.
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~

]

L

Figura 6.5

In acest caz lungimea de flambaj este considerate a fi egali cu:

1, 20,71 (6.27)

iar forta critica de flambaj data de (6.18) devine:

2
= M ) (6.28)

Pf 12

6.2.5. Cazul unei bare incastrata la ambele capete (cazul IV -
figura 6.2,d)

Se considera bara din figura 6.6, incastrata in ambele puncte @ si @.

0,51

Figura 6.6
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In acest caz, lungimea de flambaj este considerate a fi egali cu:
==1 (6.29)

iar forta critica de flambaj data de (6.18) devine:

p = 47 Eln

X ; (6.30)

6.2.6. Concluzii

Comparand valorile fortelor critice de flambaj si a lungimilor de
flambaj , pentru toate cele patru cazuri, se poate sintetiza tabelul 6.1.

Tabelul 6.1
Marime Cazul de flambaj
I Il 11 I\Y%
Forta critica de 7°ElL 7°El 27°El 47°El
flambaj Py = 42 P, = 12 Py = P2 Py = 12
Lungimea de lf =2 If =] If =0,71 lf =0,51
flambaj

Comparand relatiile de calcul ale fortelor critice de flambaj, din
tabelul 6.1, rezulta urmatoarea relatiei de inegalitate:

P, <P, <P, <P

£ £ fav:

Relatia lui Euler poate fi generalizata, sub forma:

P, =7’ E(ILZ] (6.31)

f
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6.3. Domeniul de valabilitate al relatiei lui Euler

Pentru a bara cu aria sectiunii transversale egala cu A si tensiunea
critica de flambaj o, din ecuatia (6.31) rezulta:

2
P 2 . 2
af=—f=”E iz 7Bl L :”ZE (6.32)
A AlB) L)

1

unde: iA=L, (6.33)

este definit a fi coeficientul de zvelteta, iar ,i” este raza de inertie a sectiunii
transversale.

Din relatia (6.32) este evident c3, in cazul in care bara este lunga si
subtire (I, /i este mare) atuci o, este mic. Ca urmare, coloanele de lungime

mica si sectiune mare au un raport If/i mica si o valoare mare a lui o;.

Valoarea maxima a coeficientului de zevelteta pentru o sectiune data este:

;Lmaxz[—{‘j =, (6.34)

In figura 6.7 este prezentat un graphic al variatiei tensiunii o, in
raport cu [, /i pentru un material particular. Pentru o valoare [, /i mai mica

decat anumite valori particulare, care depend de material, o bara va flamba la
o valoare a tensiunii mai mica decat cea considerate critica oy, determinate pe
baza teoriei lui Euler.

In figura 6.7, cu linie continua este prezentatd variatia conform teoriei
lui Euler iar cea cu linie punctata situatia reala.

Din relatia (6.32) rezulta ca tensiunea critica de flambaj depinde atat de
material (prin modulul de elasticitate longitudinal E') cat si de coeficientul de
zvelteta.
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Of

Teoria lui Euler

lg/i

Figura 6.7

Relatia lui Euler este valabila numai pentru defomatii din domeniul
elastic (domeniu In care legea lui Hooke este valabila).

Relatia lui Euler poate fi utilizata numai daca tensiunea critica de
flambaj este mai mica comparativ cu tensiunea corespunzatoare limitei de
poportionalitate o,:

2
E
o, = ’/; <o, (6.35)

max

Pe baza relatiei (6.35) poate fi calculate coeficientul de zvelteta 4, care

limiteaza domeniul de valabilitate a relatiei lui Euler:

(6.36)

Pornind de la relatia (6.36) pot fi definite doua cazuri de flambaj:
a) A, >4,,In acest caz flambajul este unul elastic iar fenomenul
are loc conform relatiei lui Euler;
b) A, <4, este cazul pentru care flambajul are loc in doemniul
plastic iar relatia lui Euler nu mai este valabila.

Calculul la flambaj in domeniul plastic este realizat folosind diferite
relatii care au fost dezvoltate de diferiti autori: F. lasinski, L. Tetmajer,
M. Rankine, . B. Johnson etc. La modul general, indifferent de autor, relatiile au
una din urmatoarele forme:
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o =a-bA;
6.37
o, =A+BA+CA*, (637)

unde a,b,A,B,C sunt constante care depind de material.

In figura 6.8 sunt prezentate domeniile de calcul ale tensiunii critice de
flambaj o;. In figura 6.8 sunt ficute urmitoarele notatii: o, - tensiunea

admisibila (limita de elasticitate), o, - tensiunea de proportionalitate (limita

de proportionalitate), o, - tensiunea de curgere (limita de curgere)

T A
Oc Linia dreapta - relatia
NI Tetmajer, lasinski
~\
\ Parabola lui
% Euler
o,
—
Q
< %)
N R
wn <
2l = a
g 2
© E Flambaj elastic
= >
0 )\41 }\.0 7\
Figura 6.8

6.4. Procedura de rezolvare a problemelor de flambaj

Problemele de flambaj sunt orientate spre doua aspect esentiale:
probleme de verificare si probleme de dimensionare.

6.4.1. Probleme de verificare

In cazul acestor probleme se verifica dacd coeficientul de siguranta c;,

este mai mare comparative cu unul prescris c,-
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In prima fazi se verifici domeniul de flambaj, pe baza datelor
geometrice ale barei analizate. Ca urmare, se calculeaza valoarea coeficientului
de zvelteta putdnd aparea urmatoarele situatii:

a) A>4,, caz In care ne situam in domeniul elastic fiind valabila

. . I : : y
relatia lui Euler Pf:ﬁzE(—zJ si bara este stabile daca
lf min
P
__f .
C,= P 2C,;
b) A, <A< 4, caz In care se foloseste relatia (6.37), forta de flambaj
P
fiind P, = o, A si este necesar sa se verifice conditia ¢, =L > C,;

c) A< A4, este cazul in care exista compresiune pura nefiind cazul de
calcul de flambaj.

Exemplul 6.1

Se considera bara din OL37, cu A4;,=105, de lungime [=3m si de
sectiune circular de diametru d=80mm (figura 6.9). Bara este incastrata la un
capat si libera la celalalt. Forta care actioneaza asupra barei este P=75kN,
coeficientul de siguranta prescris fiind ¢,=7. Se cere sa se verifice bara la

flambaj.

Figura 6.9
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Rezolvare:
Pentru verificare este necesard calcularea coeficientului de flambaj ¢, si

compararea lui cu cel prescris c,.

Primul pas in rezolvare este determinarea domeniului in care are loc flambajul
barei. Pentru aceasta se calculeaza coeficientul de zvelteta A al barei:

o I
imin \/Z 7Z'd4i g
A \e64d> 4

Ca urmare a faptului ca 4 > 4, flambajul are loc in domeniul elastic,

41 :
5 M_43000_ 4, o
d d

forta de flambaj calculandu-se cu relatia:

p _7°El,, ©°-2-10°-7-80*
& 64-3000°

=440.978,15(N).

Tindnd cont de valorile lui P, si P rezultd un coeficient de siguranta
de:

P
c, :_f:44-0.978;15: 5,879 <c,,
P 75-10

ceea ce conduce la concluzia ca bara nu este stabile si trebuie marita sectiunea.
Se alege o valoare a diametrului d=90mm. Pentru aceasta se recalculeaza

coeficientul de zvelteta:

,_1r _4:3000
i

=133,33> 4,

min

Fenomenul de flambaj ramanind in domeniul elastic, forta de flambaj
fiind acum:
p _7°El,, 7°-2-10°-7-90*
T 64-3000

=706.361,74(N)
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iar coeficientul de flambaj devine:

P
¢, :_f:706.361,374: 9,41>c,
P 75-10

Exemplul 6.2

Se considera bara din OL50, cu 4,=89, de lungime [=2m si de sectiune
patrata, cu latura a=60mm (figura 6.10). Bara este Incastrata la un capat si
articulate la celdlalt. Forta care actioneaza asupra barei este P=100kN,
coeficientul de siguranta prescris fiind ¢,=9, iar tensiunea de flambaj se

calculeaza cu relatia: o,=328,5-0,611.

Se cere sa se verifice bara la flambaj.

P

Figura6.10

Rezolvare:
Pentru verificare este necesard calcularea coeficientului de flambaj c, si
compararea lui cu cel prescris ¢,. Pentru inceput se determina domeniul in

care are loc flambajul barei, calculandu-se coeficientul de zvelteta A al barei:
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gl L _ L _071_07-2000
\f a1 fa 60
A 12 a 12 12

Ca urmare, flambajul are loc in domeniul plastic si forta de flambaj se
calculeaza cu relatia:

==80,83< 4.

P, =o0, A=(328,5-0,61-80,83)- 60°=279,19-3600=1.005.097,32(N)
Coeficientul de flambaj devine:

P
; L:M: 10,05 > c..
P 100 b

Ca urmare bara este stabila la flambaj.
6.4.2. Probleme de dimensionare

In acest caz se parcurg urmatorii pasi:

Pasul 1 - se considera, pentru inceput, ca flambarea are loc in domeniul
elastic. Astfel, se calculeaza momentului de inertie necesar:

2
=P~1f-cp

min 7Z'2E

Pasul 2 - se determina din valoarea momentului de inertie minim I

min ’
calculat la pasul 1, dimensiunile geometrice ale sectiunii transversal si se
calculeaza coeficientul de zveltesa A corespunzator.

Pasul 3 - se compara coeficientul de zvelteta cu valoarea 4,, care delimiteaza
zona domeniului elastic. Exista doua situatii:
a) A>4,, fenomenul de flambaj este In domeniul elasticsi

dimensionarea este considerate a fi finalizata iar dimensiunile
sectiunii transversale calculate pot fi folosite in continuare;
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b) A, <A< 4,, este necesar sa fie verificat coeficientul de siguranta (se

compara cel corespunzator dimensiunilor calculate cu cel prescris
¢,)-Dacd ¢, <c, este necesar sa se mdreasca dimensiunile sectiunii

transversale pana cand coeficientul de siguranta c, devine mai

f
mare ca cel prescris c,;

c) A< A4, calculul se face pentru compresiune pura.

Exemplul 6.3
Se considera bara din OL37, cu A4;=105, de lungime [=2m si de

sectiune dreptunghilara, cu laturile a si 2a (figura 6.11). Bara este incastrata
la amble capate.

Forta care actioneaza asupra barei este P=150kN, coeficientul de
siguranta prescris fiind ¢, =6, iar tensiunea de flambaj se calculeaza cu relatia:

o =304,5-1,121. Se cere sa se dimensioneze.
P
s

|
NA
__
Q- .
2a

A
Y

Figura 6.11

Rezolvare:

Calculul se porneste de la ipoteza flambajului iIn domeniul elastic.Pentru
inceput, se calculeaza valoarea momentului de inertie minim:
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P-I>-c .10°%. . z.
I,.=—2 p 15010 2(0'5 25000) © _455.945,32(mm").
7°E 7*-2-10

In cazul sectiunii considerate, cele doua momente de inertie axiale
sunt:

_a-(2a) _8_a4 sl _2a-(a) _E

I
‘ 12 12~ 7 12 12

si ca urmare, momentul de inertie axial minim este /.
Pe baza valorilor calculate rezulta:

4
2112 — 455.945,32(mm*)

de unde se obtine cota: a=40,67(mm).

In continuare se calculeazi coeficientul de zveltesd A corespunzitor:

! . .
polr 050 052000 oo,

- \/2(14 1 \/40,672
12 2d° 12

Ca ufmare, ipoteza flambajului in domeniul elastic nu se verifica si se
continua calculul in domeniul plastic. Se calculeaza forta de flambaj tinand
cont de valoarea coeficientului de zvelteta obtinut:

P

) =0, A=(304,5-1,124)-2a* =(304,5-1,12-85,175)-2-40,67° =691.736,48(N)

Coeficientul de siguranta la flambaj devine:

P
c, :_f:691.736248: 4611<c,.
P 15-10
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Deoarece coeficientul de siguranta obtinut este mai mic comparative cu
cel prescris, este necesar sa se mareasca sectiunea. Se alege o valoare
a=46mm.

Se recalculeaza coeficientul de zvelteta:
~0,5-2000

fae
12

flambajul are loc tot in domeniul plastic, forta de flambaj fiind:

2 = 75,306 < 4,,

P, =0, A=(304,5— 1,121)-2a*=(304,5-1,12-75,306)-2-46°=931.705,61(N)
Coeficientul de siguranta la flambaj are noua valoare de:

P
¢ DL _9BLT0S61 (o
P 1510

Ca urmare bara este stabila la flambaj.

6.5. Metoda tensiunii admisibile

Aceasta metoda este folosita cu precadere pentru problem de verificare
si pentru determinarea fortei de flambaj critice admisibile P;. In concordanta

cu aceasta metoda conditia de stabilitate este:

Pf

" o (6.38)
unde tensiunea admisibild de flambaj o, se calculeaza cu relatia:

Oy =00, (6.39)
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unde ¢ este coeficientul de flambaj si o, este tensiunea admisibila la
compresiune a materialului.

Coeficientul de flambaj ¢ depinde de material si este specificat In
tabele specializate.

Exemplul 6.4

Se considera un stalp realizat din din OL37, Incastrat la ambele capete,
de iniltime /=4m si de sectiune dreptunghilara, cu laturile a si 2a, unde

a=90mm (figura 6.12). Tensiunea admisibila este o,=140MPa .

Se cere sa se determine forta capabild prin metoda coeficientului de
flambaj ¢.

P
727278 4

l
N
_
Q- .
2a

A
Y

Figura 6.12

Rezolvare:

Forta de flambaj poate fi calculate cu relatia: P = o, A.
Aria sectiunii stalpului este: 4 =2a" =2-90* = 16200[mm2]

T 2a-a° a' 6 4
Momentul de inertie axial minim este: I, =1 = =—=10,935-10"mm

V)

I -10°
Raza de inertie minima este: imm:,/ mn _ | 10,935 1? =25,98mm
A 16,2-10
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2000
25,92

In tabelele de specialitate existd, pentru OL37 valori pentru coeficientul
de flambaj ¢ corespunzadtoare lui A=76 si A=77. Aceste valori sunt:
¢=0,713, pentru A=76 si ¢=0,709, pentru A=77.

Coeficientul de zvelteta are valoarea: A =76,982

Pentru determinarea valorii coeficientului de flambaj ¢ corspunzator

1%

coeficientului de zvelteta 1=76,982 se aplica ,, o0 regula de trei simpla” astfel:

e pentru o crestere a coeficientului de zvelteta de o unitate (77-76)
variatia coeficientului de flambaj ¢ este de -0,004 (0,713-0,709);

e caurmare, la o crestere a coeficientului de avteta de 0,982 (76-76,982)

cresterea variatia coeficientului de flambaj este
- 4. 2
o= 0'0010'98 ~-0,003928;
e valoarea coeficientului de flambaj este ¢ corespunzatoare
coeficientului de zvelteta A1=76,982 va fi:

»=0,713-0,003928=0,709072.
Forta de flambaj va fi: P =0,709072-140-16.200 = 1.608.175,296 (N).
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SOLICITARI
DINAMICE

7.1. Introducere

Solicitarile statice se caracterizeaza prin aplicarea unei forte constanta
in timp, valoarea acesteia crescand de la valoarea nula la cea maxima intr-un
interval suficient de mare in timp.

In cazul solicitdrilor dinamice, valoarea lor este dependentd de timp
siind insotite de aparitia unor acceleratii. In functie de modul de variatiei al
acestor forte si de acceleratiile care le Insotesc, aceste solicitari se impart in
trei grupe:

a) Solicitari produse de fortele de inertiei acestea avand acceleratii
constante sau cu o variatie lent3;

b) Solicitari produse de socuri care sunt insotite de variatii bruste ale
acceleratiilor (solicitari dinamice produse de ciocniri);

c) Solicitari produse de forte variabile, periodic, in timp. Astfel de
solicitari sunt vibratiile sistemelor elastice si calculul de rezistenta
la obosealda al organelor de masini supuse solicitarilor variabile
periodic in timp.

7.2. Solicitari produse de forte de inertie

Analiza acestor sisteme se realizeaza pe baza principiului lui
d’Alembert. Pe baza acestui principiu sunt considerate, pe langa fortele date si
cele existente in legaturi si fortele de inertie, in felul acesta problemele de
dinamica se transforma in probleme de statica.
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In cazul principiului lui d’Alembert sunt utilizate modele de calcul ale staticii
fiind folosite ecuatii de echilibru. Metoda poarta denumirea de metoda cineto-statica,
avand o mare raspandire in inginerie. Metoda se aplica fiecarui element de masa
dm pentru care se cunoaste acceleratia ,,a” cu care se deplaseazi. Pe baza

celor cunoscute de la Mecanicg, forta elementara de inertie dF} a elementului
de masa dm este:

dF, =a-dm. (7.1)

Corpurile pot efectua doua tipuri de miscare:
a) de translatie - caz in care apare o forta de inertie rezultants;
b) de rotatie cu axa fixa - caz in care momente de inertie rezultant.

In cazul miscarii de translatie fiecare punct al corpului are aceeasi
acceleratie si prin reducerea in centrul maselor se obtine o rezultanta a
fortelor de inertie elementare (7.1), care este egald cu produsul dintre masa si
acceleratia solidului in miscare:

F =ma. (7.2)

In cazul miscirii de rotatie cu axa fixa cu o viteza unghiulari constanti
, asupra elementului de masa dm, aflatla o distantd r de centrul de rotatie,
actioneaza doua forte, corespunzatoare directiilor normala si tangentiala:

a) de-a lungul directiei normale - o forta elementara de inertie
centrifugala, egala cu:

dF. =ro’dm (7.3)

unde: ro’ =a (7.4)

r

reprezinta acceleratia radiala;

b) de-a lungul directiei tangentiale - o forta elementara de inertie
tangentialg, egala cu:

dF, =redm (7.5)
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unde: re’ =a (7.6)

reprezinta acceleratia tangentiala.

Ca urmare, forta inertiala elementara va fi egala cu:

dF. =,/dF? +dF}? = r(\/ ot + & )dm. (7.7)

In cazul in care, centrul maselor este situat pe axa de rotatie, fortele de
inertie elementare se reduc la un cuplu de inertie:

C =Je (7.8)

unde ]| reprezinta momentul de inertie al corpului solid fata de axa de rotatie.

7.2.1. Calculul cablului de ascensor

In figura 7.1 este prezentat un sistem format dintr-un corp de greutate
Q (grautatea ascensorului), care este legat cu un cablu de greutate neglijabila.

Cand ascensorul porneste sistemul (ascensorul) are o acceleratie a.
Forta axiala maxima se produce in momentul pornirii ascensorului in sus,
moment in care, apare o forta de inertie F,, care se opune deplasarii masei Q:

F =ma=-"-a (7.9)

Fi

Figura 7.1

196



REZISTENTA MATERIALELOR SOLICITARI DINAMICE

Din conditia de echilibru a fortelor care actioneaza asupra ascensorului,
rezulta forta axiala din cablu:

N=Q+E:Q(1+—j=y/Q (7.10)
unde s-a notat cu i expresia coeficientului dinamic:

y=1+2. (7.11)
9

Fortei axiale data de (7.10) ii corespunde o tensiune & egala cu:

I
<
|

=yo,, (7.12)

=

in care, prin o, este tensiunea din cablu care se produce in cablu atunci cand
greutatea @ se afla in stare de repaus (forta Q actioneaza static).

Conditia de rezistenta impune ca tensiunea data de (7.12) sa fie mai
mica ca cea admisibila:

x| =

=l//%=l//(7$t <o, (7.13)

7.2.2. Calculul volantului

Volantii, ca si elemente mecanice, au fost folositi de la Tnceputurile
dezvoltarii sistemelor mecanice servind la uniformizarea miscarii masinilor
avand posibilitatea de a inmagazina o mare cantitate de energie cinetica.

Volantii au forma de roata cu obada, spite si butuc sau forma de disc
plin, ingrosat in zona de fixare pe arbore si in zona periferica.
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Figura 7.2

Volantii executd o miscare de rotatie cu axa fixa, in principal cu o viteza
unghiulara @ constanta fiind dezvoltate forte centrifuge, care tinand cont de
directia in care acestea actioneaza, determina aparitia unor tensiuni normale
o.

Calculul tensiunilor normale poate fi facut astfel:

a) Prin calculul aproximativ, la care, in cazul existentei spitelor
(figura 7.2), acestea sunt neglijate obada fiind considerata ca un
inel subtire aflat In miscare de rotatie (figura 7.3,a);

b) Prin calculul volantului considerat a fi disc In miscare de rotatie;

c) Prin calculul volantului cu considerarea spitelor astfel incat
volantul devine sistem static nedeterminat.
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Figura 7.3

In cazul in care se considera calculul aproximativ se admit urmatoarele
ipoteze simplificatoare:

a) masa spitelor este neglijabila comparativ cu masa obadei;

b) grosimea obadei cste mici fatd de diametrul mediu 2R al
volantului.
In calcul se considerd ci volantul se roteste cu o turatie constanti
n [ rot/min | cireia i corespunde o viteza unghiulara:

a):Z—g[rad/s] (7.14)

Forta centrifugald actioneaza in sectiunile transversale ca o forta de
tractiune care genereaza o tensiune normala.
Pentru calcul, se considera un volant cu greutatea specifica y a

materialului din care este confectionat din care se izoleaza un element foarte
mic, delimitat de un unghi elementar da (figura 7.3,b) in care se dezvolta o
forta centrifugala egala cu:
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R*0*A-da, (7.15)

in care A este aria sectiunii transversale, iar g este acceleratia gravitationala,

a, este acceleratia normal3, a, =»’R.

Izoland elementul de obada de lungime ds (figura 7.3,b), in sectiunile
axiale se dezvolta forte axiale N, care mentin echilibrul elementului. Pe baza
ecuatiei de echilibru, scrisa pentru proiectiile fortelor pe direcie bidsectoarei
unghiului de, rezulta:

. da
dF, — 2N sm7 =0

sau:

dF, :2Nsind7a;Nda. (7.16)
Considerand relatiile (7.15) si (7.16) se obtine:

F
_AE _ Vg Yop (7.17)
da g g

N

unde v este viteza medie a obadei (v=Rw).

Fortei axiale N definita de relatia (7.17) ii corespunde o tensiune
normala o:

Ve, (7.18)

Pe baza relatiei (7.18) se poate concluziona faptul ca tensiunea normala
dezvoltata nu depinde de aria sectiunii transversale A si ca urmare
dimensionarea nu poate fi facuta din conditii de rezistenta.

Ceea ce se poate determina ca si parametru functional al volantului este
viteza perifericd v a acestuia tindnd cont de materialul din care este
confectionat acesta. Din (7.18) viteza periferica maxima este:
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v< |24 (7.19)

Deformarea volantului poate fi determinata considerand relatia de
alungire:

2
Al=g-1=Z1=2,2 VR (7.20)
E g E

in care prin [ s-a considerat lungimea conturului circular al volantului
l=27nR.

Pe baza relatiei (7.20) poate fi calculata modificarea AR a razei:

_Al_oR_yVvR

AR =— :
2r. E g E

(7.21)

7.2.3. Calculul barei in rotatie

Se considera bara dreapta din figura 7.4, care are o miscare de rotatie
cu o viteza unghiulara @ constanta in jurul unui punct. Bara are sectiune
transversala variabila A(x), este realizata dintr-un material care are greutatea

specifica y si o forta orientata In lungul axei Ox egala cu Q.

Urmare a miscarii de rotatie asupra barei actioneaza forte centrifuge
care solicita bara la intindere. Considerand bara ca sistem continuu, forta de
inertie asociata unui element infinitezimal de lungime dx si de masa dm este:

dF, =a-dm= o*x L A(x)dx (7.22)
9

Forta axiala la o distanta x este egala cu:

I+r
Nx) = RE + 0?2 [ Axax, (7.23)
g g
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i S

g =70 Josci S
Ay T I !

Figura 7.4

In cazul in care, bara este de sectiune constanti (A = const.), sectiunea
periculoasa se afla situata la imbinarea barei cu bucsa cilindrica de raza r,

forta axiala fiind:

I+r 2
N:szQ+a)ZZAJxdx:w—{QRwLﬁ[(Hr)z—rz}}, (7.24)
g 9 9 2

care genereaza o tensiune normala maxima, egala cu:

N _ 9 op e TAT (V-
O =, gA{QR+ . | (14r) }} (7.25)

Analizand cazul barei de egald rezistenta (pala elicei de la motorul
avionului), din conditia de echilibru dinamic, scrisa pentru un element de bara,

se obtine:
—0,-A(x)+dF, + o,[ A(x)+ dA(X)]=0 (7.26)
de unde, tinand cont si de (7.22), rezulta:
dAx) __ e 7 (7.27)

A(x) go,
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din care se obtine:

In A(x) = —27“) X +C. (7.28)

Pentru determinarea constantei C se considera x=r din care rezulta:

2

C=In4,+ L2, (7.29)
290,

unde A, este valoarea ariei sectiunii transversale pentru x=r.

Considerand relatia (7.29) si combinand-o cu (7.28), dupa un calcul
simplu rezulta:

J’wz 2 _rz@

A(x) = Aoe{_zg““( (7.30)

Din relatia (7.25) se poate calcula viteza unghiulara maxima o astfel
incat sa nu fie depasita tensiunea normald maxima. Punand conditia de
rezistentd o, <o, ,in absenta fortei concentrate Q se obtine:

RZ 2
O-max = y @ S Ga’
29

din rezulta viteza unghiulara maxima o, :

Oy < [ 29% (7.31)
RY 7

Din relatia (7.31) se poate constata ca viteza unghiulara maxima o,

depinde de proprietatile materialului barei, de lungimea ei dar nu depinde de
aria sectiunii transversale.
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7.2.4. Calculul mecanismului biela-manivela

Mecanismul bield-manivela transforma miscarea de rotatie In miscare
de translatie rectilinie sau invers, miscarea de translatie rectilinie in miscare
de rotatie, una din aplicatiile de baza fiind cea a pistoanelor din motoarele cu
ardere internd, caz in care miscarea de translatie liniara a pistonului este
transferata catre biela fiind convertita In miscare circulara a arborelui cotit.
Cele doua componente de baza sunt (figura 7.5,a):

a) manivela - care executa o miscare de rotatie cu o viteza unghiulara
, de dorit constants;

b) biela - executa o miscare plana.

b)

Figura 7.5

Pentru determinarea solicitirilor dinamice se considera punctul K a
carui acceleratie se poate calcula cu relatia:
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a, =Ra’. (7.32)

Acceleratia unei sectiuni oarecare, situata la distanta z fata de punctul
C poate fi determinata cu relatia:

a, = Ra)z%singo.
care are valoarea maxima pentru unghiul ¢ =90":
a. =Ro"— (7.33)

Ca urmare, forta elementara de inertie a elementului de biela de
lungime dz si masi elementard dm este:

dF, =a,dm =Ra)2?ZAdz. (7.34)
g

Pe baza relatiei (7.34) se poate calcula forta de inertie pe unitatea de
lungime dz (caracter de forta distribuita):

£ =95 g ?Zy (7.35)
dz gl

Analizand relatia (7.35), se poate observa c3, In cazul in care sectiunea
bielei este constanta (A = const.), forta de inertie pe unitatea de lungime f,

are o distributie liniard de-a lungul lungimii. In acest caz, din (7.35), pentru
z =1 se obtine valoarea maxima:

f. =Ro*LA. (7.36)
g
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Momentul maxim se produce pentru distanta z = I/ /3 rezultand:

M _ f.maxl2 _ 0:0647/RCOZIV

max (7.37)
93 g
unde prin V s-a notat volumul bielei.
Pornind de la relatia (7.37) tensiunea maxima este:
2
o = M _ 00647 R & LV (7.38)
W, g-v,

Asa cum rezultd din relatia (7.38) tensiunea este direct proportionala
cu @ ceea ce face ca, la turatii foarte mari tensiunea sa fie mare. Avand in
vedere ca biela este solicitata si in directie axiala se face un calcul suplimentar
la flambaj.

7.3. Solicitari produse prin aplicarea brusca a
sarcinilor

In urma lovirii corpurilor solide, liniar-elastice, cu diferite obiecte se
constata aparitia a doua stari, dinamice:

a) o stare locala, an jurul punctului de lovire;
b) o stare generala de tensiune.

Aplicarea brusca a sarcinilor este definitd si sub denumirea de
incarcare cu soc, timpul de aplicare fiind foarte scurt. Ca urmare, problemele
in care se trateaza starea de tensiuni si deformatii a structurilor la care
incarcarea este realizata prin soc nu pot fi tratate prin metoda cineto-statica.

Studiul acestor probleme se realizeaza pe baza legii conservarii
energiei. Daca un corp de masa m se afla in miscare de translatie cu o viteza
v, energia cinetica este egala cu:

E,=—, (7.39)

iar daca este intr-o miscare de rotatie in jurul unei axe fixe, cu o viteza
unghiulara @ siare un moment de inertie J, energia cinetica este:
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E =22, (7.40)

In cazul in care acelasi corp cade de la o iniltime oarecare h, energia
potentiala pe care o are in momentul caderii este:

E, =mgh=Qh, (7.41)

unde @Q=mg reprezintd greutatea corpului, iar g este acceleratia
gravitationala.
Tindnd cont de faptul ca sistemele se considera conservative, in lipsa

frecarii sau In cazul existentei unei frecari cu un coeficient foarte mic, se poate
admite ca energia totald E, ramane constanta:

E =E +E, (7.42)

In cazul unui corp care cade de la iniltimea H energia potentiala data
de relatia (7.41) urmare a conservarii energiei, se transforma integral in
energie cinetica:

E, =L=0Qh. (7.43)

Pe baza relatiilor de calcul de mai sus, rezulta ca un corp solid rezista
cu atat mai bine la soc cu cat el este mai deformabil si ca urmare, la alegerea
barelor supuse la soc se aleg barele cu rigiditate mica.

7.3.1. Solicitari de intindere cu soc

Se considera o bara de lungime I si modul de rigiditate EA. O greutate
Q este ghidata de-a lungul barei si cade perpendicular pe un platan montat la

capatul barei. Urmare a ciocnirii rezultd o solicitare de Intindere a barei,
definita a fi intindere cu soc (figura 7.6).
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—

latan

Figura 7.6

Considerand sistemul ca fiind conservativ rezulta ca energia potentiala
pe care greutatea @, la o Inaltime oarecare H, se transforma integral in

energie cinetica. Astfel se poate scrie relatia:
E.=E,=Q-H. (7.44)

Considerand forta axiala care apare ca fiind aproximativ constanta de-a
lungul barei, energia de deformatie a barei se poate calcula cu relatia:

N-I?

U=
2EA

(7.45)

Egaland energia data de relatia (7.44) cu energia potentiala de
deformatie exprimata prin (7.45):
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N*-1
2EA

se obtine: N = ,/@ (7.46)

Tensiunea rezultanta este:

Q-H

A A-l |

unde o, =Q/A.

Tinand cont de relatiile cunoscute din Fizica: volumul barei - V = A1 si

viteza in momentul ciocnirii - v =/ 2gh , relatia (7.47) poate fi rescrisa si sub

o= /@: /EQ_"Z (7.48)
v V 2g

Pornind de la relatia (7.46) lungirea produsa in urma solicitarii cu soc
este egala cu:

formele:

N-1 20QH1
Al = = = J2HAL . 7.49
E-A EA * (7:49)

Din analiza relatiilor de mai sus se pot trage urmatoarele concluzii:

e bara rezista la soc cu atat mai mult cu cat volumul ei este mai mare
(7.48);

e tensiunea normald o indusa in bara In urma socului este cu atat
mai mica cu cat bara este mai lunga (7.47);

e din concluzia de mai sus rezulta ca pentru preluarea socului este
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bine sa fie folosite suruburi cat mai lungi (buloane elastice);

e tensiunea normalda o aparuta urmare a socului creste odata cu
cresterea modulului de elasticitate longitudinal E (7.47).

7.3.2. Solicitari de compresiune cu soc

Se considera o bara de sectiune variabild, in forma de trunchi de con,
avand ariile bazelor 4, si A, siindltimea h (figura 7.7). De la o indltime H,
cade pe suprafata superioara (4,), o greutate Q. Din conditia de sistem
conservativ, rezulta ca energia cinetica, In momentul socului, este:

E =E =L =QH. (7.50)

B dx

o
h\

h S

|

Figura 7.7

Energia acumulata in bara de sectiune variabila se calculeaza cu
expresia:
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h

5 N . NG 1

J2Ea00 ™~ 263 a0

dx (7.51)

Considerand diametrele sectiunilor d,, pentru aria 4,, d,, pentru aria
A, si d , pentruaria A,, pe baza asemanarii pot fi scrise rapoartele:

(7.52)

Pe baza relatiilor de asemanare (7.52) pot fi scrise rapoartele:

4 _ A(x) _ 4

2

a x? (a+h)2 '

(7.53)

din care rezulta:

g . (7.54)

Din egalarea energiiei de deformatie cu energia cineticd rezulta
expresia fortei axiale dezvoltatd, in bara, in momentul ciocnirii:

_ [2EQHAa
N= /—(a+h)h (7.55)

Pe baza relatiei (7.55) se poate calcula tensiunea normala maxima
0,.., aparuta in sectiunea cea mai mica, de arie A4, :
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2 3
Gmax=l=ﬂ(—a+hj = 2QHE(1+EJ (7.56)
A4l a ah ' a

Pe baza relatiei (7.56) pot fi facute umatoarele observatii:

e in cazul in care bara este de sectiune constanta: 4, = 4, = A cota
a = oo rezultand relatia (7.47) in care h=1;

e in cazul In care, bara are un varf ascutit ( este asezata pe virful
din 0), atunci a =0 si A, =0 ceea ce conduce la o valoare foarte

mare a tensiunii normale in varful din O (o, — ). Acest fapt

face ca sculele ascutite la varf sa fie utile petru operatiile de
taiere, perforare etc.

7.3.3. Solicitari de incovoiere cu soc

Se considera o grinda cu modulul de rigiditate constant ( EI, = const.) si
lungime [ peste care cade un corp de greutate Q, de la inaltimea H
(figura 7.8). Corpul de greutate Q loveste grinda intrun punct oarecare.

Qabji

Figura 7.8
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Considerand grinda de masa mica, in calcule nu vor fi luate in considerare
fortele de inertie. Considerand sistemul conservativ rezulta cda energia
potentiala se transforma, in momentul impactului, in energie cinetica.

E . =E, =L =QH. (7.57)

A . . < o b . a
In urma impactului se dezvolta reactiunile Y, = @ siY, = Q—

Pentru cele doua intervale A-C si C—B momentele incovoietoare,
conform notatiilor din figura 7.8, sunt:

M, ==X si My :%(b_x)

Ca urmare, energia de deformatie este:

a b

oy (M )
U_Z'[ZEIZ dx = 261 {J‘MIACdx+J.MICBdX} 21 {

0 0

Dupa realizarea calculelor si rearanjarea termenilor se obtine:

2 2172 2 212
_Qa b2 (a+b)= ab .
6EI I 6El 1

Tindnd cont de valoarea momentului maxim (figura 7.8) M, . = QTab,
relatia energiei de deformare se poate rescrie sub forma:
2 212
y-ab_ L e (7.58)
6EIl 6EI "
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Din egalarea relatiilor (7.57) si (7.58) se obtine:

I
—M: =QH
6EIZ i,max Q
de unde rezulta:
. 6QHEI,
i,max — I

din care se obtine:

Mi,max = '\’ @ "

(7.59)

Pe baza relatiei (7.59) poate fi calculata tensiunea maxim la incovoiere:

" _Mm_1Jw%L_
max W M/Z I

Z

6QHE
VVZI ymax )

(7.60)

Pe baza celor de mai sus pot fi faicute urmatoarele observatii:

e Momentul incovoietor maxim, in cazul solicitarii de incovoiere cu
soc, nu depinde de locul in care cade corpul (cotele a si b), relatia

(7.59);

e Tensiunea maxima, in cazul solicitarii de incovoiere cu soc, este cu
atat mai mare cu cat lungimea este mai mare si practic cu cat
volumul este mai mare, relatia (7.60). Acesta este si motivul pentru
care piesele solicitate la soc trebuie sa fie suficient de elastice
pentru ca energia din momentul socului sa fie absorbitd pe

deplasari mari.

7.3.4. Solicitari de torsiune cu soc

Se considera un arbore de diametru constant d si lungime intre
lagarele de rezemare [. La unul din capete este montat un volant de diametru
D si greutate Q. Arborele este antrenat de un moment de torsiune M, , acesta

rotindu-se cu o viteza unghiulara constatnta .
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Figura 7.9

La un moment dat, volantul este oprit brusc. In momentul imobilizrii,
energia cinetica a volantului se transforma in energie de deformatie, aceasta

fiind preluata de portiunea solicitata la torsiune, portiunea A-B. Energia
cinetica este:

E = % J& (7.61)

unde | este momentul de inertie mecanic, calculat cu relatia:

] = mR? - %@j _ sz; . (7.62)

Ca urmare, energia cinetica este egala cu:

2
E = Qb . (7.62)
89
Energia de deformatie a arborelui este data de relatia:
l 2 2
M M1
U=["tdx=—" (7.64)
2 2GI, 261,
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Egaland relatiile (7.63) si (7.64) se obtine:

QD* , _ M
8g 26,

din care rezulta expresia momentului de torsiune:

2GI Q D* Gl
Mfza)/sp—lea)JT”]. (7.65)
g

Tinand cont de relatia de calcul a tensiunii tangentiale la solicitarea de
torsiue, se obtine:

Gl
7’-max % = 2 P ] =w —ZG] = Cl)\/ ZG] 4 (766)
w, W, [ Al |4

2

unde 4= rd

este aria sectiunii transversale a arborelui, iar V este volumul

arborelui.

Pe baza relatiei (7.65) se poate concluziona ca tensiunea maxima este
invers proportionala cu volumul V' al arborelui. Ca urmare, pentru o sectiune
constanta, este preferabil un arbore cu lungime cat mai mare.

7.4. Calculul la soc cu ajutorul multiplicatorului
dinamic (de impact)

Impactul are loc atunci cand un obiect loveste altul, astfel incat se
dezvolta forte mari intre obiectele intr-o perioada foarte scurta de timp.

Se considera un corp de greautate Q care cade, de la o Indltime H, pe

un element elastic de constanta elastica statica k (figura 7.10). Constanta
statica elastica a unui arc este definita cu relatia generala:
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_ Forta
Deformatie

Considerand solicitarea in domeniul elastic si neglijand masa arcului, in
urma impactului, arcul se deformeaza cu o cantitate A, .

Energia de potentiala totald a corpului de greutate @, tinind cont de

deformarea maxima a arcului A__ , este egala cu:

U=Q(H+A,,.) (7.67)

unde prin A s-a considerat deformarea (sageata) maxima dinamica.

d,max

0
X .

y T
—_é_
onm— <V
—g
et —

Figura 7.12

Lucrul mecanic efectuat de arc este egal cu:

L= LYY , (7.68)
2
unde F, este forta elastica:
F, =kA; .- (7.69)
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Inlocuind relatia (7.69) in relatia (7.68) rezulti:

kA; max
L=t (7.70)

Presupunand ca nu au loc pierderi de energie in timpul impactului, din
cauza caldurii, a sunetului sau a deformarilor plastice locale, se poate
considera ca energia potentala a corpului de greutate @, data de relatia (7.67)

este egala cu lucrul mecanic efectuat de arc, relatia (7.70):

kA
= —dmax (7.71)

Q(H+Ad,max) :

Relatia (7.71) este, in fapt, o ecuatie de gradul II:

AL _RQN _2H (7.72)

d,max k d,max k

Solutia de valoare maxima a ecuatiei (7.72) este:

A :9+J(9j o 773)
’ k k k

Daca asupra arcului se aplica static greutatea @, tinand cont de formula

generala de calcul a rigiditatii statice a unui element elastic, rezulta ca
deformatia statica, A, poate fi exprimata prin relatia:

_Q
By = (7.74)

Pe baza relatiei (7.74), relatia (7.73) devine:
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A=A, + AL +2A H | (7.75)

sau: A=A, { 1+ /1 + zAi } (7.76)
st

Din relatia (7.76) rezulta ca, in cazul solicitarii dinamice deformarea
este egald cu deformarea statica amplificata cu un factor. Acest factor poarta
numele de multiplicator dinamic i/, acesta fiind egal cu:

=1+ /1+2£ . (7.77)
Ast

In cazul in care, lucrul mecanic exterior este foarte mare comparativ cu
energia de deformatie, expresia multiplicatorului dinamic devine:

w1+ /2i . (7.78)
Ast

Multiplicatorul dinamic {/ exprima raportul dintre marimile solicitarii
dinamice si cele corespunzatoare solicitarilor statice. Ca urmare se poate scrie:

yole B P (7.79)
O-St ASL‘ Q

Pe baza relatiei (7.77) se poate concluziona c3, in cazul aplicarii bruste
a unei greutati oarecare ( H=0 ) sageata dinamica este dublul sagetii statice:

A, =2A (7.80)

d,max st*

In mod similar se poate considera situatia In care un corp de greutate
Q se deplaseaza pe un plan orizontal si loveste acelasi arc, montat orizontal. In
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acest caz, energia pe care o are corpul in momentul impactului este energia
cinetica:

2 2
g =M _Q (7.81)
2 29
Egaland relatia (7.81) cu relatia (7.70), rezulta:
QVZ _ kA;,max
29 2
de unde rezulta:
2 2
Ad,max = \/Q_V :\/ AStV . (782)
gk g

Pe baza celor de mai sus, se pot concluziona:

e impactul are loc atunci cand o forta mare este dezvoltata intre doua
obiecte care se lovesc intre ele intr-o perioada scurta de timp;

o efectele impactului pot fi analizate considerand corpul de impact
rigid, iar materialul corpului lovit elastic liniar,

¢ In timpul coliziunii nu sunt pierderi de energie, corpurile ramanind
in contact in timpul coliziunii, iar inertia corpului elastic este
neglijata;

e marimile dinamice pot fi determinate prin inmultirea valorilor
statce cu multiplicatorul factor de impact.
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Valorile caracteristicilor £, G, v si o
Nr.crt. Material E G v a
%x10° [MPa] x10* [MPa] ><10‘6[°C‘1}

1 Alama 0,90 + 1,30 3,5+49 0,32+0,42 18 + 20

2 Aluminiu 0,69 + 0,70 2,6 0,32 +0,33 23 + 24

3 Aliaje de Al cu 0,76* 0,30* 0,27* 18*
Si

4 Aliaje de Al cu 0,43 + 0,45 1,6+1,8 0,35 23+ 26
Mg

5 Bronz 0,90 + 1,20 0,43* 0,31 + 0,35 14 + 15

6 Cupru laminat 1,10 + 1,30 4,9* 0,31+0,34 16 + 17

7 Duraluminiu 0,690, 75 2,7+2,8 0,32 +0,33 23+ 24

8 Fonta cenusie | 0,75+ 1,60* 3,2+5,2 0,20 + 0,27 10+12
alba

9 Fonta perlitica | 1,60 + 1,85* 6,8 + 8,0* - 10+ 13
maleabila

10 Otel carbon 2,0+2,15 7,8+8,5 0,26 + 0,29 11+13

11 Otel aliat 1,9 = 2,20 8,1+8,3 0,25 + 0,30 11+ 13

12 Otel inoxidabil 1,9 = 2,00 6,6 +7,5 0,25+ 0,32 15+ 18

13 Plumb 0,14 + 0,17 0,07* 0,4+ 0,45 29*

14 Polistiren 0,03 + 0,05 - - 130

15 Sticla 0,45 + 1,00 2,1+23 0,24 + 0,27 2+8

16 Textolit 0,06 + 0,10 2,2 - -

* - valori aproximative
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ANEXA 2

Momente de inertie si module de rezistenta

Nr. Forma sectiunii Relatii de calcul
crt. Aria Momente de inertie axiale I, si [, Module de Raze de inertie
sectiunii . . . rezistenta
Momente de inertie centrifugale [, w,, W, W,
Momente de inertie polare Ip
2 2 h* h* K . __h
- - 2 = =—;|Z = — W:W = — 1 :IZ:_
) Nz | ~=" VR R y J12
. A0 ..
zc % /// R i,=1,=0,289h
2l pacd £ Elipsa de inertie este un
Ty cerc
H* - h* N RN
I=I=—— H*_p* I, =1, =
2 Al B 12 W =W = y 12
' - - “ 7 6H L 2 n2
i,=i,=0,289/H"+h
Toate axele centrale sunt principale o "
Elipsa de inertie este un
cerc
. / h +a*
Iy :lZ =
3. A=h%-a’ h* —a* h*-a* 12
l=1,= W.=W,= [ =i, =0,289/1’ +a’
12 6h ly =1,=Y, +a

Elipsa de inertie este un
cerc
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ANEXA 2

Nr. Forma sectiunii Relatii de calcul
crt. Aria Momente de inertie axiale I, si [, Module de rezistenta Raze de inertie
secfiunil Momente de inertie centrifugale [, W, Wy Wy
Momente de inertie polare Ip
- at a*’A h NOY
N L=l =51 18 =W, === i,=i,=0,289a
4 2 =1 Ao g 12 12 48 Y12 24 y 2T
o W =W =0,118d’ = . N
) Toate axele centrale sunt principale 7 Elipsa de inertie este un
z = 0,042K° cerc
1 2
Y
b _ hb® _ _ bh*
bh3 hb3 Wy_T’ VVZ_? iy :0,289h
5 7 = == ] ==
z /. = A=bh L 12 L 12 i =0,289b
A
vy
|VZM W 1B’ —hb* HB® —hb*
12 r Ao (RO _ R
6. A=BH-bh - 68 Y \[12(BH-bh)
BH® - bh BH3 _bh3
l,=——— W =
12 z 6H

. _ | BH-bh’
' \12(BH—bh)
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ANEXA 2
Nr. Forma sectiunii Relatii de calcul
crt. Aria Momente de inertie axiale I, si [, Module de Raze de inertie
sectiunii . . . rezistenta
Momente de inertie centrifugale /,, W,, W, W,
Momente de inertie polare /,
X b2 i,=0,289b
_ I,=—(H-h) W, =—(H~-h)
A=b(H-h
, (H=h) y b12 Y [
IZ:E(H3—h3) WZ:6LH(H2_;,2) g \] 12
i,=0,289+ H? + Hh+h?
3 4 3 4
; 1[ hb _7d w o L b zd |y g ogop [ hb"
777 ) Y41 3 16 7 2b| 3 16
2 c zd
8. T
A, 1 bk _d* w o L[ b _md" )
b =2l 3 16 2n 3 16 i,=0,289b
Y
3 3 3 2 3 3
x 1, =200 hy w, =20 Py iy:\/ a'h+b"(H —h)
9 —H | asans 12 12 6b 6 12[ah+b(H —h)]
tal -‘rb(H—h) ah3 b , \ . ah3+b(H3_h3)
2112 T E(H - ) _al® i(H3—h3) * |\ 12[ah+b(H —h)]
Y “ 6H 6H
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ANEXA 2
Nr. | Forma sectiunii Relatii de calcul
crt. Aria sectiunii Momente de inertie axiale 1, si I, Module de rezistenta Raze de inertie
Momente de inertie centrifugale [, W, W, W,
Momente de inertie polare I,
= hB* + (H-h)b’ hB* + (H-h)b’
Z -%é?’l’/f;’ 1+ z:+ 2_% i,= %V
10. | = A=BH +h(B-b
4 i (B-b) _ bH? +(B-b)’ Y bH® + (Bb)K’ L
: 1:1 ’ 12 =T 6H *Na
bh*
W, =— i,=0,289b
S T 13 7d® 3 4 2 z y="5
L AN | | A=bh-T L= 118 [ 116L 6
oy U = 2 12 bk d* d* a?
Z X 1—1,18—3 1+16—2
11. 2412 bh d az
3 4 4 1+167
y ; hb [1 1, 18“’_] i,=0,289h [1-1,18-— d’ .
Yy
12 hb? Ly L
bh
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ANEXA 3
Profile standardizate
Otelul laminat la cald, profil U
Y
%m\—i__r STAS 564 — 80 R - raza de rotunjire interioari a talpilor
d A2 r — raza de rotunjire a talpilor la varf
z, / 2 . (dirrAle{lsi‘uni s1 caracter'istici geometrice) I\i}iy\;,jlfzggﬁg Zénree;;ixset::gle
Ae, h— m?lpmea pr_OﬁIUIm 1,, 1, — raze de giratie (inertie)
’ b — latimea talpilor S, - momentul static al semisectiunii
t - grosimea
y b-d
T
Simbol Dimensiuni [mm] A{ia B Marimi statice pentru axele de incovoiere
profil | secpuzml Z-Z . Y-y :
h b d t R r |} Alem®] [ Liem® | Wolem®| | ifem] | Liem') [ W [em’]] ijfem] | S,Jem’] | eyfcm]
uUs 50 38 S 7 3,5 7,12 26,4 10,6 1,92 9,12 3,75 1,13 - 1,37
U6.5 65 42 5,5 7,28 7,5 4 9,03 57,5 17,7 2,52 14,1 5,07 1,25 - 1,42
U8 80 45 6 | 7,76 4 11,0 106 26,5 3,10 194 6,36 1,33 15,9 1,45
U 10 100 50 6 8,26 4,5 13,5 205 41,2 3,91 293 8,49 1,47 24.5 1,55
U 12 120 55 7 8,72 4.5 17,0 361 60,7 4,62 432 11,1 1,59 36,3 1,60
Ul4 140 60 7 9,72 5 20,4 605 86,4 5,45 62,7 | 148 1,75 51,4 1,75
U116 160 65 7.5 | 10,20 5.5 24,0 925 116 6,21 85,3 18,3 1,89 68,8 1,84
U1l8 180 70 8 | 10,68 5,5 28,0 1350 150 6,95 114 224 2,02 89,6 1,92
U 20 200 75 85 11416 6 32,2 1910 191 7,70 148 27.0 2,14 114 2,01
U 22 220 80 9 12,14 6,5 374 2690 245 8.48 197 33,6 2,30 146 2,14
U 24 240 85 9,5 12,62 6,5 423 3600 300 922 248 39,6 242 179 2,23
U 26 260 90 10 | 13,60 7 48.3 4820 371 9,99 317 47,7 2,56 221 2,36
U 30 300 100 10 | 15,60 8 58,8 8030 535 11,7 495 67.8 2,90 316 2,70
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ANEXA 3

s
et Y
bRy c..
-

Otelul laminat la cald
Profil 1
Stas 564 — 80

{dimensiuni si caracteristici geometrice)
h ~ inalfimea profilutui
b - latimea talpilor

* d ~ grosimea inimil

t — grosimea medie a tédlpilor

R - raza de rotunjire interioari a t3lpilor

r — raza de rotunjire a talpilor la varf
I,. Iy, —~ momente de inertie axiale

W,, W, — module de rezistenta
I,, I, — raze de giratie (inertie)

S, - momentul static al semisectiunii

Simbol Dimensiuni [mm] Aria Marimi statice pentru axele de incovoiere Simbol
profil secfiunil Z2-7 y -y S.fem’] | profil
H b t d=R |r Afcm’] Licm'] [ W, [em’] | ifem] [Lfem™] [ W fem’] ]iJcm]

i8 80 (42 |59 [39 |23 7,58 77,8 19,5 32 6,29 3,0 0,91 11,4 I8

110 100 |50 |68 145 |27 10,6 171 342 401 (122 4,88 1,07 19,9 110

112 120 |58 77 151 131 14,2 328 54.6 481 | 215 741 1,23 31,8 112

114 140 |66 [86 [57 ({34 183 573 81,9 561 (362 10,71 1,40 47,7 114

116 160 |74 (95 |63 138 22.8 935 117 6.4 54,7 14,8 11,55 68,0 116 ]
118 180 |82 104 |69 |41 279 1450 161 72 81,3 19.8 1,71 934 118

120 200 |90 11,3 75 |45 33.5 2140 214 8,0 117 26,0 1,87 125 120

122 220 |98 11,92 (81 |49 39,6 3060 278 880 | 162 33,1 2,02 162 122 |
124 240 {106 (12,80 (87 {52 46,1 4250 354 9,59 [221 417 12,20 206 124
I26 260 | 113 [13,77[/94 |56 53,4 5740 442 10,4 | 288 51,0 2,32 257 126
128 280 [ 119 [14,85 10,1 |61 61,1 7590 542 11,1 | 364 612 2,45 316 128 |
130 300 (125 115820108 165  |69.1  |9800 653 11,9 |451 722|256 381 130
132 1320 1131 1692|115 |69 1778 12510 (782 12,7 |555 847 2,67 457 132

136 360 | 143 [19,05130 |78 97.1 19610 | 1090 142 |818 114 2,90 638 136

140 400|155 | 20,10 | 14.4 |86 118 120210 | 1460|157 | 1160 149 3.13 857 140
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REZISTENTA MATERIALELOR ANEXA 3

Otel cornier cu aripi egale laminat

n la cald r —raza de rotunjire interioara a talpilor
v, f u STAS 424 - 80 r —razade rotunjire a ta_lpllo-r la varf
: [ E I;. Iy — momente de inertie axiale
i : (dimensiuni §i marimi statice de incovoiere) W, Wy —module de rezistenta
g u a - latimea aripii I;. Iy - raze de giratie (inertie) o
< ¢ — grosimea aripii I §au.11, I, sau 1_2 - momente de inertie
z C C — centrul de greutate principale, maxim §i minim .
© T ; e — distanta de la centrul de greutate la partea 8. - momeatul static al semisectiunii
A exterioara a talpii
e n 7,y — axele centrale
& Y' a &, n sau 1,2 - axe centrale principale
Dimensiunile Aria Distanta axelor, [mm] L Marimi geometrice inertiale
. . .s - va 1
Denumirea L sectiunii {mmL_ sectiunii 3 Z— 7 y-y E-& 1-1 |7n-n 2-2
a |g [r |6 |lem] e u vy sz L=, [W=W, [i=, |I=h [i =L (W, T Ly
I — fem] | lem’] [em] |[em'] |[em] |[em®] |[em’] |[cm] | [em*
20x20x3 20 13 3512 1,12 0,60 ;14] 10384 )0,70 | 0,39 0,28 0,59 0,61 0,74 n,16 0,19 10,38 0,25
20x20x4 20 |4 3512 {145 0,64 | 1,41 1050071 {041 0,36 0,58 0,77 10,73 0,21 0,23 0,38 0,28
25x25%3 25 |3 352 [ta2 072 | 1,77 [ 1,00 087 (080 |045 (075 [126 |094 |033 |032 |048 | 0465
25x25x4 25 |4 35412 1,85 0,76 11,77 | 1.08 | 0,89 [ 1,01 0,58 0,74 1,60 053 1043 0,40 0,48 0,585 |
25x25x5 25 |5 3.5 |2 | 2,26 0,80 1,77 },134;),91 1,20 0,71 0.73 1,89 0,91 0,52 0,46 048 10,685 |
30x30 x4 30 | 4 5 2,512,227 0,88 2,12 {124 {105 180 0,85 08 (2385 11,12 0,75 1,61 0,58 1,05
30x30x5 30 |5 5 125278 0,92 1212 11,30 | 1,07 12,16 | 1,04 0,88 341 1,41 0,92 0.70 0,57 1,245
35x35x4 35 {4 5 2,51 2,67 100 | 247 1142|124 1295 1,18 1,05 4,68 [ 133 1,23 0,86 0,68 1,725
[35x35%5 35 |5 [5 125(328 104 (247 (1481125 1356 | 145 [ 104 |564 1130 | 149 101 | 0,67 |2075 |
40x 40 x 4 40 |4 |6 13 [308 [112 [283 [164 [ Ta2 [543 Lol 120|860 [ 1,51 226 137 [078 |262
40x 40 5 4 |5 |6 |3 [37 L16 | 283 | 1.64 | 1,42 [543 | 191 [1.20 [8.60 |151 [226 |137 |0.77 |3.17
45x45x5 45 |s 17 1351430 128 [3,18 7181 [1.58 [7.84 1243 1135 1124 |1,70 [325 |i,80 | 087 |4575 |
45x45x6 45 |6 7 3,5 15.08 1,32 13,18 | 1,87 | 1,59 | 9,16 2,88 1,34 14,5 1,69 3,82 2,04 0,87 534
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REZISTENTA MATERIALELOR ANEXA 3
Dimensiunile Aria Distanta axelor, [mm] Mirimi geometrice inertiale
Denumirea L sectiunii [mm] sectiunii | 77 y-y E-& 1-1 n1-1 2-2
a Jg [r Tn Jlem] e u vio |ve [LAL TWaW, (A, | I=h [ =L [w, [i Ly |
fem] |fem} |{em] |{om*] |fom] |f{cm'} |{cm’] |[cm] |[cm"]

50x50x5 S0 |5 [7 [35]480 140 13,54 11,98 | 1,76 | 12,80 | 3,61 1,50 | 174 1,90 14,54 1259 1097 [643
50x50x 6 S0 |6 |7 [35]569 145 [3,54 {201 ]177 12,80 |3,61 1,50 |204 1,89 1533 261 {097 |7,535
50 x50 x 7 50 {7 17 135]656 1,49 13,54 13,10 | 1,78 [ 14,60 | 4,16 1,49 123, 1,88 (6,10 [291 |09 |85
60 x 60 x 5 60 I5 [8 |4 [58 1,64 1424 [232 (211 | 194 [445 1,82 (30,7 [230 [802 345 [1,17 [11,34
60 x 60 x 6 60 16 (8 14 [691 169 424 (2391211228 [5,29 1,82 1362 (229 [943 1395 [1,17 [13.385
60 x 60 x 8 60 |8 18 |4 1963 1,77 14,24 12,50 12,14 [ 292  [6,89 1,80 46,2 1226 12,1 [4,8 (1,16 |17,05
60 x 60 x 10 60 110 |8 |4 |11, 1,85 1424 [2,61 {2,17 349 | 84] 1,78 | 55,1 223 [148 [567 |1,16 [20,15
70x70x6 70 16 19 1451813 1,93 1495 12,73 [2.46 {369 |727 2,13 1535 (268 [152 [569 |137 119,15
70x70x 7 70 17 |9 14,5940 1,97 (4,95 12,79 {247 {424 |84l 2,12 | 67.1 2,67 1175 [627 (136 [248
70x70x 8 70 [8 |9 14571060 [201 4952385249 [475 |952 2,11 1753 1266 197 1691 |136 [278
70 x 70 x 10 70 [10 [9 14511310 [209 [495 (296 252 (572 1,70 12,09 {905 12,63 (239 (809 {135 {333
80x80x 6 80 |6 [10 |5 {935 2,17 1566 3,07 2,82 ]558 |957 244 1885 13,08 (231 [755 [156 [327
80 x 80 x 8 80 |8 |10 |5 11230 (226 |566 (3,19 ]282]722 12,6 2,43 | 115 3,06 1298 (936 [155 [426
80x80x 10 80 [10 {10 |5 Tis,1 2,34 15,66 (3,30 {2,385 [87.5 15,4 2,41 1139 303 (363 [110 {155 5135
90 x 90 x 8 90 18 |11 [55]139 2,50 16,36 13,53 [3,17 [ 104 16,1 2,74 1166 345 43,1 [122 1,76 |61,45
90x90x9 90 |9 |11 [55]155 2,54 1636 13,59 |3,18 | 116 18,0 274 | 184 345 1478 [133 [1,76 | 68.l
90x90x 11 90 |11 |11 [551187 2,62 1636 (3,70 | 321 | 138 21,6 2,72 218 341 | S57,1 (154 1,75 | 80,45
100 x 100 x 8 1008 12 |6 [155 2,74 17,07 13,87 13,52 | 145 19,9 3,06 | 230 3,85 598 |154 1196 |85,
100x100x10 [100{10 [12 |6 ]192 2,82 |7,07 [399 [3,54 | 177 24,6 3,04 | 280 3,83 729 183 [1,95 [10355
100x100x12 110012 |12 {6 227 2,90 | 7,07 | 4,11 | 3,57 {207 29,1 3,02 | 328 3,80 1857 [209 {194 [1i21,15
120x320x10 112010 |13 [6.5]23,2 331 849 [469 423 [313 36,0 3,67 | 497 463 129 [275 1236 | 184
120x120x 12 112012 |13 |6.5]275 3,40 [ 849 | 480 [426 | 368 42,7 3,65 | 584 460 151 31,5 {235 [2165
130x130x12 113012 |14 |7 1303 3,64 19,19 1515 {4.60 | 472 50,4 3,97 | 750 500 1194 [37,7 [254 278 |
130x130x14 [ 130]14 |14 |7 1347 3,72 19,19 1526 | 4,63 {540 58,2 3,94 | 857 497 1223 (424 [253 |[317
140x140x12 14012 |15 [75]325 3,90 19,90 |5,50 [ 5,04 |602 59,7 431 {957 543 1248 1449 1276 |3545
140x 140x 14 140 |14 |15 [75]376 3,98 | 990 | 5,61 507 | 689 68,8 430 1094 1542 {284 [505 {274 |405
150x150x 14 [150]14 |16 [8 |403 4,21 10,6 {595 | 531 {845 78,2 4,58 | 1340 {577 [347 [583 1294 {4965
150x 150x 16 {150116 |16 |8 |457 429 10,6 6,07 !534 {949 88,7 456 11510 {574 1391 644 1293 5595

| 160x160x12 16012 [17 [85]374 439 | 11,3 [ 6,19 {5,74 [ 913 78,6 494 11450 623 [376 |605 [3,17 [537
160x160x 14 [160 |14 [ 17 [85]433 447 1113 1630 1577 [ 1046|908 492 1662 1620 [431 [681 {3,116 |6155
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ANEXA 3

Otel cornier cu aripi neegale

STAS 425 - 80

(dimensiuni $i mérimi statice de incovoiere)
a — latimea talpii mari

b — latimea talpi mici

g — grosimea aripii

C — centrul de greutate

€z, €y — distanta de la centrul de greutate la
partea exterioari a tilpii

z, y — axele centrale

€, m sau 1,2 - axe centrale principale

r —raza de rotunjire interioard a tilpilor

] —raza de rotunjire a tilpilor la varf

I,, I, — momente de inertie axiale

Ig sau Iy, I sau I; — momente de inertie principale,
maxim §i minim

W, W, — module de rezistentd

1,, 1, — raze de giratie (inertie)

S, - momentul static al semisectiunii

. Dimensiunile sectiunii [mm] Arie Distanta axelor [em] Marimi geometrice inertiale
Denumire sectiunii
LE IA‘I ge y-¥y z-z 5-% -1
cm I W, i I, W, i I, i I, | i I
a b g | r) n & e u u v v vs jem'] | fem?) | [em] | [em’'] | [em’] | {em] [cngl‘l Ic:i] lcn‘;‘J lc;u fem’]
30x20x3 30 20 3 15 | 2 1,43 1099 1050 | 205 151 086 | 104 | 056 | 0427 125 0,62 | 093 | 044 [ 029 1055 (143 1,00 [ 026 | 042 [043
30x20x4 4 ’ (.86 1,03 0,54 2,02 1.52 091 1,04 0,58 0,427 1,59 0 81 1,92 0,55 0,38 0,55 1181 0,99 10,33 {042 {054
40x20x3 40 20 3 351 2 1,73 1,42 0,44 2,61 1,77 9,79 1,19 0,464‘ 0,257 2,80 1,09 027 0,47 030 | 0,52 1296 1,31 0.31 0,42 10,64
40x20x4 4 o 2,26 1,47 j 048 | 258 | 1,80 | 0,83 117 | 0,50 { 0,252 3,59 142 126 | 060 | 0.3% | 0,51 |3,80 1,30 1 0,39 { 042 [0,81
45x30x4 45 30 4 45 | 2 2,86 1,48 0,74 306 {223 121 1,58 0,80 | 0.434 5,77 1.91 142 2,05 0,91 0.85 6,63 1,52 119 | 0.65 [1,98
45x30x5 5 ’ 352 | 1,52 10,78 | 304 ) 226 1.27 158 | 0.83 | 0,429 698 | 235 141 247 1,11 0,84 |8,00 1,51 1,45 | 0,64 [2,37
60x30x5 60 30 5 6 3 429 1215 [ 0,68 | 389 | 267 | 120 1.77 1 0,72 | 0,256 156 | 4,04 §,90 | 2.60 1,12 { 078 |16,5 1,96 1,69 | 0,63 [3,56
60x30x6 ] 508 1220 1072 1386 1269 | 1,25 1,75 1 0,74 | 0,252 182 | 4,78 1.89 { 3.02 1,32 { 6,77 [19.2 1,95 199 | 0,63 |4,06
60x40x5 5 4,79 196 1 097 { 4,10 | 3,01 1,68 | 2.1 1,10 | 0.434 17,2 | 425 1,89 | 6,11 2,02 1,13 |198 203 1354 | 0,86 {599
60x40x6 60 40 6 6 3 5,68 [ 2,00 1,01 4,08 | 3,02 1,72 1 2,10 1,12 1 0431 20,1 5,03 1.88 | 7,12 {238 1,12 [23,1 202 | 415 | 0.86 |69
60x40x7 7 6,55 | 2,04 1,05 | 406 | 303 1,77 1 2,09 1,14 | 0427 229 | 5779 1,87 1807 [ 274 | LIl |263 2,00 | 475 | 0,85 [7.86
65%50%6 6 6,58 | 2,04 1,29 1452 | 360 | 215 | 239 1,50 | 0,575 272 1 6,1 2,03 140 | 3,77 | 1,46 (338 227 1743 1,06 [11,37
65x50x7 65 50 7 6,51 3,5 7,60 | 2,08 133 |1 450 [ 362 | 219 | 239 1,52 | 0,572 3 7.03 | 2,02 159 | 434 | 145 (385 225 | 8,51 1,06 1139
65x50xR 8 860 | 2,11 1,37 1449 | 364 | 223 | 239 1,54 | 0.569 34,8 1 7,93 | 2,01 177 | 489 | 1.44 |43.0 223 | 957 1,50 1143
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REZISTENTA MATERIALELOR ANEXA 3
Denumire Dimensiunile sectiunii [om] :ﬂ:ﬁi Distanta axelor [em} Marimi geometrice inertiale
LI o {cAI] . gu v-y Z-z -k -1
m 1, W, i 1. W, i I i I i 1,
a b g ¥ r e e, u uz v v, vy fem’] | fem] | [em) | fem’) | [em®] | [em] [tllél‘ cfn] om® |cr':|] [cm‘il
65x50x9 9 65|35 958 | 2,15 149 {448 | 363 2,28 2.36 1,57 ¢ 0,567 382 | 877 | 2,00 19,4 5,39 1,42 1470 2,25 10,3 1,05 1157
T5x50x7 75 50 7 65135 8,31 248 1,25 510 1377 | 2,13 2,63 1,38 | 0,433 46,4 | 924 | 2,36 16,5 4,39 1,41 |533 2,53 9,57 1,07 115,09
80x60x7 80 60 7 8 4 9,38 { 2,51 1,52 5,55 3,79 | 2,17 2,92 140 | 0,546 590 10,7 | 2,51 284 6,34 1,74 (72,00 | 277 154 1,28 23,7
80x65x6 [i] 841 2,39 1,65 5,61 4,63 2,69 1294 | 20t 0,649 529 | 941 2,51 312 6,44 193 [685 285 15,6 1,35 {242
80x65x8 | ] 11,0 {247 11,73 1559 (465 1279 1994 | 205 ) 0,645 68,1 1123 | 249 | 40,1 | 841 1 191 [88.0 2,82 203 {136 [309
80x65x10 10 136 | 2355 1,81 5,56 1,63 | 2,90 2,954 2,11 0,640 82,2 15,1 246 | 483 103 1,89 (10,6 279 | 248 1,35 |36,8
90x60x6 90 60 [ 8 4 869 | 2,89 1,41 6,14 ] 450 } 246 | 3.16 | 1,60 | 0442 7.7 117 { 2,87 | 258 5,61 1,72 1828 3,09 14.6 1,30 252
90x60x8 8 114 | 297 | 149 | 611 454 | 2,56 | 3,15 1.69 | 0437 92,5 154 { 2,85 | 33,0 7,31 1,70 1107 3,06 19,0 1,29 {321
100x50x8 100 50 8 9 45 ild | 359 1,12 6,49 | 444 | 200 | 296 1,18 | 0,257 116 18,1 3,18 195 | 5,04 1,31 {123 328 12,7 1,05 (26,7
100x50x10 10 ’ 14,1 3,67 1.2 6,43 440 | 2,08 | 293 1,22 | 0,253 i41 222 1316 | 234 | 6,17 1,29 {149 325 154 1,05 {316
| 100x75x7 7 11,9 | 3,06 1,83 696 | 542 | 3,10 | 361 2,18 | 0,553 118 17,0 | 3,15 569 10,0 |1 219 145 3,49 | 30,1 1,359 487 .
100x75x9 100 75 9 10 |5 15,1 3,15 1.91 6,91 S45 [ 322 {363 [ 222 | 0549 148 21,5 | 3,13 71,0 127 [ 217 |18t 347 1 378 1.59 1605
100x75x11 11 18,2 | 3,23 1,99 | 6,47 5,494{ 3,32 | 3,65 2,27 ] 0,545 176 259 | 3,11 84,0 153 | 2,15 (214 3,44 | 451 1,58 [71,3
120x80%8 8 15,5 3,83 1,87 8,23 599 | 327 {423 [ 2,16 | 0437 226 276 | 3,82 1 808 132 | 228 |260 4,10 | 46,6 1,73 79,4
120x80x10 120 80 10 11 5.5 19,1 3,92 1,95 8,18 | 6,03 | 3,37 | 421 2,19 | 0435 276 34,1 3.80 | 98,1 162 1| 226 |317 4.07 56,8 172 [96,5
120x80x12 12 22,7 1400 | 2.03 8,14 | 6,06 1346 {420 | 225 { 0432 323 404 | 377 114 19,1 224 1371 4,064 | 66,6 1,71 111
150x90x10 150 % 10 1251 65 232 5,00 | 2,04 10,1 7.05 [ 3,60 5,03 {224 [ 0,360 533 533 { 4,80 146 21,0 | 2,51 591 5,05 88,3 1,95 [161
150x90x12 12 ’ : 275 5,08 {212 10.1 7,18 13,70 5,00 {230 {0358 627 633 | 4,77 171 248 1249 1654 | 502 104 1,94 189
150x100x10 10 24,5 4,80 | 2,34 10,3 7,50 | 4,10 525 | 2,68 [ 0442 552 541 4,78 198 258 1 2,86 [637 5,13 112 2.15 1191
150x100x12 150 | 109 12 13 6,5 28,7 1489 | 242 102 753 1419 $24 | 273 | 0439 650 642 | 476 | 232 30,6 | 2,84 {719 5,10 132 2,15 227
150x100x14 14 332 | 497 | 250 102 | 7,56 | 4,28 }TZ?: 2,77 1 0435 744 741 4,73 | 264 352 | 2,82 [856 5,07 152 2,14 |257
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ANEXA 4

Caracteristici geometrice ale sectiunilor folosite la calculul de torsiune

Nr. Forma sectiunii 1, [mm4] W, [mmﬂ Punctele cu Obs.
crt Tmax
- pe conturul exterior
7Z'(D4 d4) 7z(D4—d4) r __1l6DM,
= S S A max D* d4) d
1 32 16D 7 a=-
4 ) L
_7zD (1_ 4) _ D3 (1_ 4) pe conturul interior :
32 16 T =0T,
16 M,
7Z'd4 7Zd3 -pecontur: Tygx = W
2. 32 16
T - in fundul crestaturii | Valorile coeficienpi-lor
4 3 max t:
k, D kD sunt:
16 8

d
3 D 0,05 0,1 0,2 0,4 0,6 0,8 1,00 1,50

k 0,89 0,82 0,81 0,76 0,66 0,52 0,38 0,14

kq 1,56 1,56 1,46 1,22 0,92 0,63 0,38 0,07
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ANEXA 4

REZISTENTA MATERIALELOR

Nr. Forma sectiunii ) [mm4] w. [mm3] Punctele cu Obs.
t t
crt Tax
3,35 D3 (2n\® r_ -lamijlocul tdieturii D
4,74 D* (Zhj v _j max J 2< <8
7 % - D 22,9\ D
5| 262
4. //////// 1)_4 2,6£—1 % 7}10 .. - lamijlocul taieturii 0,5< % <2
D ! 16 D 0,3 5—0,7
), | _
5. [ ) 0,053 D* 0,087 D? D=2d
N / " h = 0,875D
D |
7 .. - lamijlocul laturii mari. _ -
o Pe latura mica - Valorile cqef1c1enb1 -
lor k, k; si k, sunt:
3 2
11. khb kyhb r=kyt,,
n 1 1,2 1,5 1,75 2 2,5 3 4 5 6 8 10
k 0,141 0,166 0,196 | 0,214 | 0,229 0,249 0,263 0,281 0,291 0,289 0,307 0,312
k1 0,208 0,219 0,231 | 0,239 | 0,246 0,258 0,267 0,282 0,291 0,299 0,307 0,312
ks 1,00 0,93 086 | 082 | 079 0,77 0,75 0,74 0,74 0,74 0,74 0,74
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